-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathextract_tad_feature.py
166 lines (131 loc) · 4.53 KB
/
extract_tad_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""Extract features for temporal action detection datasets"""
import argparse
import os
import random
import numpy as np
import torch
from timm.models import create_model
from torchvision import transforms
# NOTE: Do not comment `import models`, it is used to register models
import models # noqa: F401
from dataset.loader import get_video_loader
def to_normalized_float_tensor(vid):
return vid.permute(3, 0, 1, 2).to(torch.float32) / 255
# NOTE: for those functions, which generally expect mini-batches, we keep them
# as non-minibatch so that they are applied as if they were 4d (thus image).
# this way, we only apply the transformation in the spatial domain
def resize(vid, size, interpolation='bilinear'):
# NOTE: using bilinear interpolation because we don't work on minibatches
# at this level
scale = None
if isinstance(size, int):
scale = float(size) / min(vid.shape[-2:])
size = None
return torch.nn.functional.interpolate(
vid,
size=size,
scale_factor=scale,
mode=interpolation,
align_corners=False)
class ToFloatTensorInZeroOne(object):
def __call__(self, vid):
return to_normalized_float_tensor(vid)
class Resize(object):
def __init__(self, size):
self.size = size
def __call__(self, vid):
return resize(vid, self.size)
def get_args():
parser = argparse.ArgumentParser(
'Extract TAD features using the videomae model', add_help=False)
parser.add_argument(
'--data_set',
default='THUMOS14',
choices=['THUMOS14', 'FINEACTION'],
type=str,
help='dataset')
parser.add_argument(
'--data_path',
default='YOUR_PATH/thumos14_video',
type=str,
help='dataset path')
parser.add_argument(
'--save_path',
default='YOUR_PATH/thumos14_video/th14_vit_g_16_4',
type=str,
help='path for saving features')
parser.add_argument(
'--model',
default='vit_giant_patch14_224',
type=str,
metavar='MODEL',
help='Name of model')
parser.add_argument(
'--ckpt_path',
default='YOUR_PATH/vit_g_hyrbid_pt_1200e_k710_ft.pth',
help='load from checkpoint')
return parser.parse_args()
def get_start_idx_range(data_set):
def thumos14_range(num_frames):
return range(0, num_frames - 15, 4)
def fineaction_range(num_frames):
return range(0, num_frames - 15, 16)
if data_set == 'THUMOS14':
return thumos14_range
elif data_set == 'FINEACTION':
return fineaction_range
else:
raise NotImplementedError()
def extract_feature(args):
# preparation
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
video_loader = get_video_loader()
start_idx_range = get_start_idx_range(args.data_set)
transform = transforms.Compose(
[ToFloatTensorInZeroOne(),
Resize((224, 224))])
# get video path
vid_list = os.listdir(args.data_path)
random.shuffle(vid_list)
# get model & load ckpt
model = create_model(
args.model,
img_size=224,
pretrained=False,
num_classes=710,
all_frames=16,
tubelet_size=2,
drop_path_rate=0.3,
use_mean_pooling=True)
ckpt = torch.load(args.ckpt_path, map_location='cpu')
for model_key in ['model', 'module']:
if model_key in ckpt:
ckpt = ckpt[model_key]
break
model.load_state_dict(ckpt)
model.eval()
model.cuda()
# extract feature
num_videos = len(vid_list)
for idx, vid_name in enumerate(vid_list):
url = os.path.join(args.save_path, vid_name.split('.')[0] + '.npy')
if os.path.exists(url):
continue
video_path = os.path.join(args.data_path, vid_name)
vr = video_loader(video_path)
feature_list = []
for start_idx in start_idx_range(len(vr)):
data = vr.get_batch(np.arange(start_idx, start_idx + 16)).asnumpy()
frame = torch.from_numpy(data) # torch.Size([16, 566, 320, 3])
frame_q = transform(frame) # torch.Size([3, 16, 224, 224])
input_data = frame_q.unsqueeze(0).cuda()
with torch.no_grad():
feature = model.forward_features(input_data)
feature_list.append(feature.cpu().numpy())
# [N, C]
np.save(url, np.vstack(feature_list))
print(f'[{idx} / {num_videos}]: save feature on {url}')
if __name__ == '__main__':
args = get_args()
extract_feature(args)