-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathclip.py
313 lines (267 loc) · 11.3 KB
/
clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#!/usr/bin/env python
import os
from collections import OrderedDict
import torch
from torch import nn
MODEL_PATH = 'your_model_path/clip_visual_encoder'
_MODELS = {
# extracted from OpenAI, see extract_clip
"ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"),
"ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"),
"ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"),
}
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model, n_head, attn_mask=None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x, return_attn=False):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
if return_attn:
return self.attn(x, x, x, need_weights=True, attn_mask=self.attn_mask)
else:
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x, return_attn=False):
if return_attn:
x_, attn = self.attention(self.ln_1(x), return_attn=True)
x = x + x_
x = x + self.mlp(self.ln_2(x))
return x, attn
else:
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(
self, width, layers, heads, return_attn=False,
clip_return_layer=1, clip_return_interval=1,
):
super().__init__()
self.layers = layers
self.return_attn = return_attn
self.resblocks = nn.ModuleList()
for _ in range(layers):
self.resblocks.append(
ResidualAttentionBlock(
width, heads,
)
)
self.return_index = []
for i in range(clip_return_layer):
self.return_index.append(layers - int(i * clip_return_interval) - 1)
print(f'Teacher return index: {self.return_index}')
def forward(self, x):
attn = None
z = []
for idx, blk in enumerate(self.resblocks):
if idx == self.layers - 1 and self.return_attn:
x, attn = blk(x, return_attn=True)
else:
x = blk(x)
if idx in self.return_index:
z.append(x)
x = torch.stack(z)
return x, attn
class VisionTransformer(nn.Module):
def __init__(
self, input_resolution, patch_size, width, layers, heads, output_dim,
clip_norm_type='l2', kernel_size=1,
return_attn=False, clip_return_layer=1, clip_return_interval=1,
clip_return_cls=False
):
super().__init__()
self.clip_norm_type = clip_norm_type
self.return_attn = return_attn
print(f'Normalization Type: {clip_norm_type}')
print(f'Return Attention: {return_attn}')
print(f'Return Layer: {clip_return_layer}')
print(f'Return Interval: {clip_return_interval}')
self.output_dim = output_dim
self.conv1 = nn.Conv3d(
3, width,
(kernel_size, patch_size, patch_size),
(kernel_size, patch_size, patch_size),
(0, 0, 0), bias=False
)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(
width, layers, heads, return_attn=return_attn,
clip_return_layer=clip_return_layer,
clip_return_interval=clip_return_interval,
)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
self.clip_return_cls = clip_return_cls
def forward(self, x, mask=None):
x = self.conv1(x) # shape = [*, width, grid, grid]
B, C, T, H, W = x.shape
x = x.permute(0, 2, 3, 4, 1).reshape(B * T, H * W, C)
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
if mask is not None:
cls_tokens = x[:, :1, :]
x = x[:, 1:]
x = x.reshape(B, T * H * W, C)
x = x[~mask].view(B * T, -1, C)
HW = x.shape[1]
x = torch.cat([cls_tokens, x], dim=1)
else:
HW = H * W
x = x.permute(1, 0, 2) # NLD -> LND
x, attn = self.transformer(x)
K = x.shape[0]
if self.clip_return_cls:
x = x.permute(0, 2, 1, 3) # (K, HW+1, BT, C) => (K, BT, HW+1, C)
cls_tokens, x = x[:, :, :1], x[:, :, 1:]
cls_tokens = cls_tokens.view(K, B, T, 1, C).mean(2) # (K, BT, 1, C) => (K, B, 1, C)
x = x.reshape(K, B, T * HW, C)
x = torch.cat((cls_tokens, x), dim=2) # (K, B, HWT+1, C)
else:
x = self.ln_post(x[:, 1:, :, :]) # [K, HW, BT, C]
x = x.view(K, HW, B, T, C).permute(0, 2, 3, 1, 4).reshape(K, B, T * HW, C) # [K, B, THW, C]
x = x @ self.proj
if self.clip_norm_type == 'l2':
x = x / x.norm(dim=-1, keepdim=True)
elif self.clip_norm_type == 'none':
pass
else:
raise NotImplementedError
if self.return_attn:
return x, attn[:, 0, 1:]
else:
return x
def inflate_weight(weight_2d, time_dim, center=True):
print(f'Init center: {center}')
if center:
weight_3d = torch.zeros(*weight_2d.shape)
weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
middle_idx = time_dim // 2
weight_3d[:, :, middle_idx, :, :] = weight_2d
else:
weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
weight_3d = weight_3d / time_dim
return weight_3d
def load_state_dict(model, state_dict, input_resolution=224, patch_size=16, center=True):
state_dict_3d = model.state_dict()
for k in state_dict.keys():
if k in state_dict_3d.keys() and state_dict[k].shape != state_dict_3d[k].shape:
if len(state_dict_3d[k].shape) <= 2:
print(f'Ignore: {k}')
continue
print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}')
time_dim = state_dict_3d[k].shape[2]
state_dict[k] = inflate_weight(state_dict[k], time_dim, center=center)
pos_embed_checkpoint = state_dict['positional_embedding']
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = (input_resolution // patch_size) ** 2
orig_size = int((pos_embed_checkpoint.shape[-2] - 1) ** 0.5)
new_size = int(num_patches ** 0.5)
if orig_size != new_size:
print(f'Pos_emb from {orig_size} to {new_size}')
extra_tokens = pos_embed_checkpoint[:1]
pos_tokens = pos_embed_checkpoint[1:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(0, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=0)
state_dict['positional_embedding'] = new_pos_embed
model.load_state_dict(state_dict, strict=True)
def clip_b16(
pretrained=True,
clip_norm_type='l2', input_resolution=224, kernel_size=1,
return_attn=False, center=True, clip_return_layer=1,
clip_return_interval=1, clip_return_cls=False
):
model = VisionTransformer(
input_resolution=input_resolution, patch_size=16,
width=768, layers=12, heads=12, output_dim=512,
clip_norm_type=clip_norm_type,
kernel_size=kernel_size, return_attn=return_attn,
clip_return_layer=clip_return_layer,
clip_return_interval=clip_return_interval,
clip_return_cls=clip_return_cls
)
if pretrained:
print('load pretrained weights')
state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu')
load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=16, center=center)
return model.eval()
def clip_l14(
pretrained=True,
clip_norm_type='l2', input_resolution=224, kernel_size=1,
return_attn=False, center=True, clip_return_layer=1,
clip_return_interval=1, clip_return_cls=False
):
model = VisionTransformer(
input_resolution=input_resolution, patch_size=14,
width=1024, layers=24, heads=16, output_dim=768,
clip_norm_type=clip_norm_type,
kernel_size=kernel_size, return_attn=return_attn,
clip_return_layer=clip_return_layer,
clip_return_interval=clip_return_interval,
clip_return_cls=clip_return_cls
)
if pretrained:
print('load pretrained weights')
state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu')
load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=14, center=center)
return model.eval()
def clip_l14_336(
pretrained=True,
clip_norm_type='l2', input_resolution=336, kernel_size=1,
return_attn=False, center=True, clip_return_layer=1,
clip_return_interval=1, clip_return_cls=False
):
model = VisionTransformer(
input_resolution=input_resolution, patch_size=14,
width=1024, layers=24, heads=16, output_dim=768,
clip_norm_type=clip_norm_type,
kernel_size=kernel_size, return_attn=return_attn,
clip_return_layer=clip_return_layer,
clip_return_interval=clip_return_interval,
clip_return_cls=clip_return_cls
)
if pretrained:
print('load pretrained weights')
state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu')
load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=14, center=center)
return model.eval()
if __name__ == '__main__':
import time
from fvcore.nn import FlopCountAnalysis
from fvcore.nn import flop_count_table
import numpy as np
seed = 4217
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
num_frames = 8
model = clip_b16(pretrained=True, kernel_size=1, return_attn=False, clip_return_layer=1)
# print(model)
# flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224))
# s = time.time()
# print(flop_count_table(flops, max_depth=1))
# print(time.time()-s)
print(model(torch.rand(1, 3, num_frames, 224, 224)).shape)