-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtflite_to_tflu.py
96 lines (76 loc) · 2.84 KB
/
tflite_to_tflu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright © 2020 Arm Ltd. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions for converting a TFLite model into a C source file loadable by TensorFlow Lite Micro."""
import argparse
def convert_tflite_to_array(open_file, tflite_path):
"""Write a C style array containing TFLite binary data into an open file.
Args:
open_file: Opened file to write to.
tflite_path: Path to the TFLite to convert.
"""
open_file.write("#include <cstdint>\n")
open_file.write("#include <cstddef>\n")
open_file.write('#include "BufAttributes.h"\n')
model_arr_name = "g_Model"
open_file.write(f"static const uint8_t {model_arr_name}[] ALIGNMENT_ATTRIBUTE = ")
_write_tflite_data(open_file, tflite_path)
# Some extra functions useful for our deployment code.
open_file.write(
f"""
const uint8_t * GetModelPointer()
{{
return {model_arr_name};
}}
size_t GetModelLen()
{{
return sizeof({model_arr_name});
}}\n
"""
)
def _write_tflite_data(open_file, tflite_path):
"""Write all tflite file binary data to an opened file."""
read_bytes = _model_hex_bytes(tflite_path)
line = " {\n\t"
i = 1
while True:
try:
el = next(read_bytes)
line = line + el + ", "
if i % 20 == 0:
line = line + "\n\t"
open_file.write(line)
line = ""
i += 1
except StopIteration:
line = line[:-2] + "};\n"
open_file.write(line)
break
def _model_hex_bytes(tflite_path):
"""Yields bytes from a tflite file."""
with open(tflite_path, "rb") as tflite_model:
byte = tflite_model.read(1)
while byte != b"":
yield f"0x{byte.hex()}"
byte = tflite_model.read(1)
def main():
"""
Main function to convert a TensorFlow Lite model to an array and write it to a file.
"""
with open(FLAGS.output_path, "w", encoding="utf-8") as f:
convert_tflite_to_array(f, FLAGS.tflite_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--tflite_path", type=str, default="", help="Path to tflite file that will be converted.")
parser.add_argument("--output_path", type=str, default="", help="Path used for the output file.")
FLAGS, _ = parser.parse_known_args()
main()