Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray [4,−1,2,1] has the largest sum = 6.
More practice: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
方案一
典型的DP题:
- 状态dp[i]:以A[i]为最后一个数的所有max subarray的和。
- 通项公式:dp[i] = dp[i-1]<=0 ? dp[i] : dp[i-1]+A[i]
- 由于dp[i]仅取决于dp[i-1],所以可以仅用一个变量来保存前一个状态,而节省内存。
方案二
虽然这道题目用dp解起来很简单,但是题目说了,问我们能不能采用divide and conquer的方法解答,也就是二分法。
假设数组A[left, right]存在最大区间,mid = (left + right) / 2,那么无非就是三中情况:
- 最大值在A[left, mid - 1]里面
- 最大值在A[mid + 1, right]里面
- 最大值跨过了mid,也就是我们需要计算[left, mid - 1]区间的最大值,以及[mid + 1, right]的最大值,然后加上mid,三者之和就是总的最大值
我们可以看到,对于1和2,我们通过递归可以很方便的求解,然后在同第3的结果比较,就是得到的最大值。
方案一
public class Solution {
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
public int maxSubArray(int[] A) {
int n = A.length;
int[] dp = new int[n]; //dp[i] means the maximum subarray ending with A[i];
dp[0] = A[0];
int max = dp[0];
for(int i = 1; i < n; i++){
dp[i] = A[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);
max = Math.max(max, dp[i]);
}
return max;
}
}
方案二
public class Solution {
public int maxSubArray(int[] A) {
int maxSum = Integer.MIN_VALUE;
return findMaxSub(A, 0, A.length - 1, maxSum);
}
// recursive to find max sum
// may appear on the left or right part, or across mid(from left to right)
public int findMaxSub(int[] A, int left, int right, int maxSum) {
if(left > right) return Integer.MIN_VALUE;
// get max sub sum from both left and right cases
int mid = (left + right) / 2;
int leftMax = findMaxSub(A, left, mid - 1, maxSum);
int rightMax = findMaxSub(A, mid + 1, right, maxSum);
maxSum = Math.max(maxSum, Math.max(leftMax, rightMax));
// get max sum of this range (case: across mid)
// so need to expend to both left and right using mid as center
// mid -> left
int sum = 0, midLeftMax = 0;
for(int i = mid - 1; i >= left; i--) {
sum += A[i];
if(sum > midLeftMax) midLeftMax = sum;
}
// mid -> right
int midRightMax = 0; sum = 0;
for(int i = mid + 1; i <= right; i++) {
sum += A[i];
if(sum > midRightMax) midRightMax = sum;
}
// get the max value from the left, right and across mid
maxSum = Math.max(maxSum, midLeftMax + midRightMax + A[mid]);
return maxSum;
}
}