-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml.html
261 lines (237 loc) · 10.4 KB
/
ml.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link href="{{ url_for('static', filename='vendor/bootstrap/css/bootstrap.min.css') }}" rel="stylesheet">
<link href="{{ url_for('static', filename='vendor/font-awesome/css/font-awesome.min.css') }}" rel="stylesheet"
type="text/css">
<link href='https://fonts.googleapis.com/css?family=Lora:400,700,400italic,700italic' rel='stylesheet'
type='text/css'>
<link
href='https://fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800'
rel='stylesheet' type='text/css'>
<!-- Custom styles for this template -->
<link href="{{ url_for('static', filename='css/clean-blog.min.css') }}" rel="stylesheet">
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet"
integrity="sha384-+0n0xVW2eSR5OomGNYDnhzAbDsOXxcvSN1TPprVMTNDbiYZCxYbOOl7+AMvyTG2x" crossorigin="anonymous" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/font/bootstrap-icons.css" />
<link href="https://api.mapbox.com/mapbox-gl-js/v2.1.1/mapbox-gl.css" rel="stylesheet" />
<link rel="stylesheet" href="style.css" />
<title>Machine Learning Bootcamp </title>
</head>
<body>
<!-- Navbar -->
<nav class="navbar navbar-expand-lg bg-dark navbar-dark py-10 fixed-top">
<div class="container">
<a href="/" class="navbar-brand">Machine learning Bootcamp</a>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navmenu">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navmenu">
<ul class="navbar-nav ms-auto">
<li class="nav-item">
<a href="/ml" class="nav-link">Machine Learning</a>
</li>
<li class="nav-item">
<a href="/contact" class="nav-link">Contact Us</a>
</li>
</ul>
</div>
</div>
</nav>
<!-- Learn Sections -->
<section id="learn" class="p-5">
<div class="container">
<div class="row align-items-center justify-content-between">
<div class="col-md">
<img src="static/img/m.jpg" class="img-fluid" alt="" />
</div>
<div class="col-md p-5">
<h2>Machine Learning</h2>
<p class="lead">
Machine learning is the study of computer algorithms
that can improve automatically through experience
and by the use of data.
</p>
<p>
<ul>
<li> The term machine learning was coined in 1959 by Arthur Samuel </li>
<li>A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.</li>
<li> Types of Machine learning
<ul>
<li> Supervised Learning</li>
<li> Unsupervised Learning </li>
<li> Reinforcment Learning </li>
</ul>
</li>
</ul>
</p>
</div>
</div>
</div>
</section>
<!-- Learn Sections -->
<section id="learn" class="p-5">
<div class="container">
<div class="row align-items-center justify-content-between">
<div class="col-md">
<img src="static/img/1.jpg" class="img-fluid" alt="" />
</div>
<div class="col-md p-5">
<h2> Supervised Learning</h2>
<p class="lead">
It is a technique in which we teach or train the machine
using data which is labelled.(or)
In supervised learning, we are given a data set and already
know what our correct output should look like, having the
idea that there is a relationship between the input and the output.
</p>
<p>
<ul>
<li> Supervised learning problems are categorized
into “regression” and “classification” problems.</li>
<li>In a regression problem, we are trying to predict
results within a continuous output</li>
<li>In a classification problem, we are instead trying
to predict results in a discrete output.</li>
</ul>
</p>
<h3>Example</h2>
<p class="lead">
<ul>
<li>
<strong> Regression </strong> - predict stock price
</li>
<li>
<strong> Classification</strong> - predict spam or not spam
</li>
</ul>
</p>
</div>
</div>
</div>
</section>
<section id="learn" class="p-5 bg-dark text-light">
<div class="container">
<div class="row align-items-center justify-content-between">
<div class="col-md p-5">
<h2>Some famous Supervised Algorithims </h2>
<p class="lead">
<ul>
<li>Linear Regression</li>
<li>Logistic regression</li>
<li>Decision Tree</li>
<li>Random Forest</li>
<li>Naive Bayes classifier</li>
<li>K nearest neighbour</li>
<li>Support Vector Machine</li>
</ul>
</p>
</div>
<div class="col-md">
<img src="static/img/2.jpg" class="img-fluid" alt="" />
</div>
</div>
</div>
</section>
<!-- Unsupervised ml -->
<section id="learn" class="p-5">
<div class="container">
<div class="row align-items-center justify-content-between">
<div class="col-md">
<img src="static/img/5.png" class="img-fluid" alt="" />
</div>
<div class="col-md p-5">
<h2> Unsupervise Machine Learning</h2>
<p class="lead">
It is the training of machine learning using information
that is unlablled and allowing the algorithm to act on that
information without guidance
</p>
<p>
<ul>
<li>
We can derive this structure by clustering the data based
on relationships among the variables in the data.
</li>
<li>
It finds similar patterns and make cluster of same patterns
</li>
</ul>
</p>
<h3>Example</h3>
<ul>
<li> Find all transcations which are fraudlent in nature</li>
</ul>
</div>
</div>
</div>
</section>
<section id="learn" class="p-5 bg-dark text-light">
<div class="container">
<div class="row align-items-center justify-content-between">
<div class="col-md p-5">
<h2>Some famous unSupervised Algorithims </h2>
<p class="lead">
<ul>
<li>K-means clustering</li>
<li>KNN</li>
<li>Hierarchal clustering</li>
<li>Principle Component Analysis</li>
<li>Neural Networks</li>
<li>Anomaly detection</li>
</ul>
</p>
</div>
<div class="col-md">
<img src="static/img/6.png" class="img-fluid" alt="" />
</div>
</div>
</div>
</section>
<section id="learn" class="p-5">
<div class="container">
<div class="row align-items-center justify-content-between">
<div class="col-md">
<img src="static/img/7.png" class="img-fluid" alt="" />
</div>
<div class="col-md p-5">
<h2>Reinforcement Learning</h2>
<p class="lead">
It is a part of machine learning where an agent is put in an
environment and he learns to behave in this enivronment by performing
certain actions and observing the rewards which it's gets from those actions
it's advance machine learning
</p>
<h3>Example</h3>
<p>
Teaching a game bot to perform better and better at a game by learning and
adapting to the new situation of the game.
</p>
</div>
</div>
</div>
</section>
<nav aria-label="Page navigation example" my=100>
<ul class="pagination justify-content-center" center ="right">
<li class="page-item"><a class="page-link bg-dark text-light" href="/linear">Next</a></li>
</ul>
</nav>
<!-- Footer -->
<footer class="p-5 bg-dark text-white text-center position-relative">
<div class="container">
<p class="lead">Copyright © 2021 Machine learning Bootcamp</p>
<a href="#" class="position-absolute bottom-0 end-0 p-5">
<i class="bi bi-arrow-up-circle h1"></i>
</a>
</div>
</footer>
<script
src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"
integrity="sha384-gtEjrD/SeCtmISkJkNUaaKMoLD0//ElJ19smozuHV6z3Iehds+3Ulb9Bn9Plx0x4"
crossorigin="anonymous"
></script>
</body>
</html>