Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Evaluation code problem,我只想使用训练好的策略进行评价,我在脚本文件中增加了test,和model_dir,为什么程序还是从零开始训练呢? #8

Open
RexDrac opened this issue Jul 10, 2024 · 1 comment

Comments

@RexDrac
Copy link

RexDrac commented Jul 10, 2024

Importing module 'gym_38' (/home/nuc/Downloads/IsaacGym_Preview_4_Package/isaacgym/python/isaacgym/_bindings/linux-x86_64/gym_38.so)
Setting GYM_USD_PLUG_INFO_PATH to /home/nuc/Downloads/IsaacGym_Preview_4_Package/isaacgym/python/isaacgym/_bindings/linux-x86_64/usd/plugInfo.json
PyTorch version 1.13.0+cu117
Device count 1
/home/nuc/Downloads/IsaacGym_Preview_4_Package/isaacgym/python/isaacgym/_bindings/src/gymtorch
Using /home/nuc/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Emitting ninja build file /home/nuc/.cache/torch_extensions/py38_cu117/gymtorch/build.ninja...
Building extension module gymtorch...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module gymtorch...
/home/nuc/miniforge3/envs/dexgrasp/lib/python3.8/site-packages/pointnet2_ops/pointnet2_utils.py:15: UserWarning: Unable to load pointnet2_ops cpp extension. JIT Compiling.
warnings.warn("Unable to load pointnet2_ops cpp extension. JIT Compiling.")
Setting seed: 0
Algorithm: ppo
Python
Averaging factor: 0.01
Obs type: full_state
self.device_id: 0
self.graphics_device_id 0
Not connected to PVD
+++ Using GPU PhysX
Physics Engine: PhysX
Physics Device: cuda:0
GPU Pipeline: enabled
JointSpec type free not yet supported!
self.num_shadow_hand_bodies: 24
self.num_shadow_hand_shapes: 20
self.num_shadow_hand_dofs: 22
self.num_shadow_hand_actuators: 18
self.num_shadow_hand_tendons: 4
Using VHACD cache directory '/home/nuc/.isaacgym/vhacd'
Found existing convex decomposition for mesh '/home/nuc/xiaomi/UniDexGrasp2/assets/meshdatav3_scaled/sem/Car-669043a8ce40d9d78781f76a6db4ab62/coacd/decomposed_006.obj'
/home/nuc/miniforge3/envs/dexgrasp/lib/python3.8/site-packages/gym/spaces/box.py:127: UserWarning: WARN: Box bound precision lowered by casting to float32
logger.warn(f"Box bound precision lowered by casting to {self.dtype}")
RL device: cuda:0
Sequential(
(0): Linear(in_features=300, out_features=1024, bias=True)
(1): ELU(alpha=1.0)
(2): Linear(in_features=1024, out_features=1024, bias=True)
(3): ELU(alpha=1.0)
(4): Linear(in_features=1024, out_features=512, bias=True)
(5): ELU(alpha=1.0)
(6): Linear(in_features=512, out_features=512, bias=True)
(7): ELU(alpha=1.0)
(8): Linear(in_features=512, out_features=24, bias=True)
)
Sequential(
(0): Linear(in_features=300, out_features=1024, bias=True)
(1): ELU(alpha=1.0)
(2): Linear(in_features=1024, out_features=1024, bias=True)
(3): ELU(alpha=1.0)
(4): Linear(in_features=1024, out_features=512, bias=True)
(5): ELU(alpha=1.0)
(6): Linear(in_features=512, out_features=512, bias=True)
(7): ELU(alpha=1.0)
(8): Linear(in_features=512, out_features=1, bias=True)
)
################################################################################
Learning iteration 0/10000

                   Computation: 10170 steps/s (collection: 0.697s, learning 0.090s)
           Value function loss: 14.2616
                Surrogate loss: 0.0191
         Mean action noise std: 0.80
                   Mean reward: -2.95
           Mean episode length: 4.79
              Mean reward/step: -0.63
   Mean episode length/episode: 7.74
        Mean episode successes: 0.0000
Mean episode current_successes: 0.0000

Mean episode consecutive_successes: 0.0000

               Total timesteps: 8000
                Iteration time: 0.79s
                    Total time: 0.79s
                           ETA: 7865.6s

################################################################################
Learning iteration 1/10000

                   Computation: 19142 steps/s (collection: 0.334s, learning 0.084s)
           Value function loss: 4.0435
                Surrogate loss: -0.0087
         Mean action noise std: 0.80
                   Mean reward: -4.97
           Mean episode length: 7.98
              Mean reward/step: -0.63
   Mean episode length/episode: 7.74
@yiqiaoqingyuyu
Copy link

按说不会呀,看看是不是model_dir后面少了个 \ 。只要取消--test就会进入测试模型不会训练了

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants