-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_ddp.py
657 lines (578 loc) · 24.2 KB
/
train_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
import os
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader, DistributedSampler, Subset
import argparse
import logging
import tqdm
from itertools import chain
import wandb
import random
import numpy as np
from pathlib import Path
from einops import rearrange
from causalvideovae.model import *
from causalvideovae.model.ema_model import EMA
from causalvideovae.dataset.ddp_sampler import CustomDistributedSampler
from causalvideovae.dataset.video_dataset import TrainVideoDataset, ValidVideoDataset
from causalvideovae.model.utils.module_utils import resolve_str_to_obj
from causalvideovae.utils.video_utils import tensor_to_video
try:
import lpips
except:
raise Exception("Need lpips to valid.")
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def ddp_setup():
dist.init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
def setup_logger(rank):
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
f"[rank{rank}] %(asctime)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S"
)
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
def check_unused_params(model):
unused_params = []
for name, param in model.named_parameters():
if param.grad is None:
unused_params.append(name)
return unused_params
def set_requires_grad_optimizer(optimizer, requires_grad):
for param_group in optimizer.param_groups:
for param in param_group["params"]:
param.requires_grad = requires_grad
def total_params(model):
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
total_params_in_millions = total_params / 1e6
return int(total_params_in_millions)
def get_exp_name(args):
return f"{args.exp_name}-lr{args.lr:.2e}-bs{args.batch_size}-rs{args.resolution}-sr{args.sample_rate}-fr{args.num_frames}"
def set_train(modules):
for module in modules:
module.train()
def set_eval(modules):
for module in modules:
module.eval()
def set_modules_requires_grad(modules, requires_grad):
for module in modules:
module.requires_grad_(requires_grad)
def save_checkpoint(
epoch,
current_step,
optimizer_state,
state_dict,
scaler_state,
sampler_state,
checkpoint_dir,
filename="checkpoint.ckpt",
ema_state_dict={},
):
filepath = checkpoint_dir / Path(filename)
torch.save(
{
"epoch": epoch,
"current_step": current_step,
"optimizer_state": optimizer_state,
"state_dict": state_dict,
"ema_state_dict": ema_state_dict,
"scaler_state": scaler_state,
"sampler_state": sampler_state,
},
filepath,
)
return filepath
def valid(global_rank, rank, model, val_dataloader, precision, args):
if args.eval_lpips:
lpips_model = lpips.LPIPS(net="alex", spatial=True)
lpips_model.to(rank)
lpips_model = DDP(lpips_model, device_ids=[rank])
lpips_model.requires_grad_(False)
lpips_model.eval()
bar = None
if global_rank == 0:
bar = tqdm.tqdm(total=len(val_dataloader), desc="Validation...")
psnr_list = []
lpips_list = []
flickering_list = []
video_log = []
num_video_log = args.eval_num_video_log
with torch.no_grad():
for batch_idx, batch in enumerate(val_dataloader):
inputs = batch["video"].to(rank)
with torch.amp.autocast("cuda", dtype=precision):
output = model(inputs)
video_recon = output.sample
# Upload videos
if global_rank == 0:
for i in range(len(video_recon)):
if num_video_log <= 0:
break
video = tensor_to_video(video_recon[i])
video_log.append(video)
num_video_log -= 1
inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous()
video_recon = rearrange(
video_recon, "b c t h w -> (b t) c h w"
).contiguous()
# Calculate PSNR
mse = torch.mean(torch.square(inputs - video_recon), dim=(1, 2, 3))
psnr = 20 * torch.log10(1 / torch.sqrt(mse))
psnr = psnr.mean().detach().cpu().item()
# Calculate LPIPS
if args.eval_lpips:
lpips_score = (
lpips_model.forward(inputs, video_recon)
.mean()
.detach()
.cpu()
.item()
)
lpips_list.append(lpips_score)
# Calculate Flickering
gvideo_dif = video_recon[:, 1:] - inputs[:, :-1]
rvideo_dif = inputs[:, 1:] - inputs[:, :-1]
flickering = torch.abs(gvideo_dif - rvideo_dif).mean().detach().cpu().item()
psnr_list.append(psnr)
flickering_list.append(flickering)
if global_rank == 0:
bar.update()
# Release gpus memory
torch.cuda.empty_cache()
return psnr_list, lpips_list, flickering_list, video_log
def gather_valid_result(psnr_list, lpips_list, flickering_list, video_log_list, rank, world_size):
gathered_psnr_list = [None for _ in range(world_size)]
gathered_lpips_list = [None for _ in range(world_size)]
gathered_flickering_list = [None for _ in range(world_size)]
gathered_video_logs = [None for _ in range(world_size)]
dist.all_gather_object(gathered_psnr_list, psnr_list)
dist.all_gather_object(gathered_lpips_list, lpips_list)
dist.all_gather_object(gathered_flickering_list, flickering_list)
dist.all_gather_object(gathered_video_logs, video_log_list)
return (
np.array(gathered_psnr_list).mean(),
np.array(gathered_lpips_list).mean(),
np.array(gathered_flickering_list).mean(),
list(chain(*gathered_video_logs)),
)
def train(args):
# setup logger
ddp_setup()
rank = int(os.environ["LOCAL_RANK"])
global_rank = dist.get_rank()
logger = setup_logger(rank)
# init
ckpt_dir = Path(args.ckpt_dir) / Path(get_exp_name(args))
if global_rank == 0:
try:
ckpt_dir.mkdir(exist_ok=False, parents=True)
except:
logger.warning(f"`{ckpt_dir}` exists!")
dist.barrier()
# load generator model
model_cls = ModelRegistry.get_model(args.model_name)
if not model_cls:
raise ModuleNotFoundError(
f"`{args.model_name}` not in {str(ModelRegistry._models.keys())}."
)
if args.pretrained_model_name_or_path is not None:
if global_rank == 0:
logger.warning(
f"You are loading a checkpoint from `{args.pretrained_model_name_or_path}`."
)
model = model_cls.from_pretrained(
args.pretrained_model_name_or_path,
ignore_mismatched_sizes=args.ignore_mismatched_sizes,
low_cpu_mem_usage=False,
device_map=None,
)
else:
if global_rank == 0:
logger.warning(f"Model will be inited randomly.")
model = model_cls.from_config(args.model_config)
if global_rank == 0:
logger.warning("Connecting to WANDB...")
model_config = dict(**model.config)
args_config = dict(**vars(args))
if 'resolution' in model_config:
del model_config['resolution']
wandb.init(
project=os.environ.get("WANDB_PROJECT", "causalvideovae"),
config=dict(**model_config, **args_config),
name=get_exp_name(args),
)
dist.barrier()
# load discriminator model
disc_cls = resolve_str_to_obj(args.disc_cls, append=False)
logger.warning(
f"disc_class: {args.disc_cls} perceptual_weight: {args.perceptual_weight} loss_type: {args.loss_type}"
)
disc = disc_cls(
disc_start=args.disc_start,
disc_weight=args.disc_weight,
kl_weight=args.kl_weight,
logvar_init=args.logvar_init,
perceptual_weight=args.perceptual_weight,
loss_type=args.loss_type,
wavelet_weight=args.wavelet_weight
)
# DDP
model = model.to(rank)
if args.enable_tiling:
model.enable_tiling()
model = DDP(
model, device_ids=[rank], find_unused_parameters=args.find_unused_parameters
)
disc = disc.to(rank)
disc = DDP(
disc, device_ids=[rank], find_unused_parameters=args.find_unused_parameters
)
# load dataset
dataset = TrainVideoDataset(
args.video_path,
sequence_length=args.num_frames,
resolution=args.resolution,
sample_rate=args.sample_rate,
dynamic_sample=args.dynamic_sample,
cache_file="idx.pkl", # Cache idx
is_main_process=global_rank == 0,
)
ddp_sampler = CustomDistributedSampler(dataset)
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
sampler=ddp_sampler,
pin_memory=True,
num_workers=args.dataset_num_worker,
)
val_dataset = ValidVideoDataset(
real_video_dir=args.eval_video_path,
num_frames=args.eval_num_frames,
sample_rate=args.eval_sample_rate,
crop_size=args.eval_resolution,
resolution=args.eval_resolution,
)
indices = range(args.eval_subset_size)
val_dataset = Subset(val_dataset, indices=indices)
val_sampler = CustomDistributedSampler(val_dataset)
val_dataloader = DataLoader(
val_dataset,
batch_size=args.eval_batch_size,
sampler=val_sampler,
pin_memory=True,
)
# optimizer
modules_to_train = [module for module in model.module.get_decoder()]
if args.freeze_encoder:
for module in model.module.get_encoder():
module.eval()
module.requires_grad_(False)
logger.info("Encoder is freezed!")
else:
modules_to_train += [module for module in model.module.get_encoder()]
parameters_to_train = []
for module in modules_to_train:
parameters_to_train += list(filter(lambda p: p.requires_grad, module.parameters()))
gen_optimizer = torch.optim.AdamW(parameters_to_train, lr=args.lr, weight_decay=args.weight_decay)
disc_optimizer = torch.optim.AdamW(
filter(lambda p: p.requires_grad, disc.module.discriminator.parameters()), lr=args.lr, weight_decay=args.weight_decay
)
# AMP scaler
scaler = torch.amp.GradScaler('cuda')
precision = torch.bfloat16
if args.mix_precision == "fp16":
precision = torch.float16
elif args.mix_precision == "fp32":
precision = torch.float32
# load from checkpoint
start_epoch = 0
current_step = 0
if args.resume_from_checkpoint:
if not os.path.isfile(args.resume_from_checkpoint):
raise Exception(
f"Make sure `{args.resume_from_checkpoint}` is a ckpt file."
)
checkpoint = torch.load(args.resume_from_checkpoint, map_location="cpu")
model.module.load_state_dict(checkpoint["state_dict"]["gen_model"], strict=False)
# resume optimizer
if not args.not_resume_optimizer:
gen_optimizer.load_state_dict(checkpoint["optimizer_state"]["gen_optimizer"])
# resume discriminator
if not args.not_resume_discriminator:
disc.module.load_state_dict(checkpoint["state_dict"]["dics_model"])
disc_optimizer.load_state_dict(checkpoint["optimizer_state"]["disc_optimizer"])
scaler.load_state_dict(checkpoint["scaler_state"])
# resume data sampler
ddp_sampler.load_state_dict(checkpoint["sampler_state"])
start_epoch = checkpoint["sampler_state"]["epoch"]
current_step = checkpoint["current_step"]
logger.info(
f"Checkpoint loaded from {args.resume_from_checkpoint}, starting from epoch {start_epoch} step {current_step}"
)
if args.ema:
logger.warning(f"Start with EMA. EMA decay = {args.ema_decay}.")
ema = EMA(model, args.ema_decay)
ema.register()
logger.info("Prepared!")
dist.barrier()
if global_rank == 0:
logger.info(f"Generator:\t\t{total_params(model.module)}M")
logger.info(f"\t- Encoder:\t{total_params(model.module.encoder):d}M")
logger.info(f"\t- Decoder:\t{total_params(model.module.decoder):d}M")
logger.info(f"Discriminator:\t{total_params(disc.module):d}M")
logger.info(f"Precision is set to: {args.mix_precision}!")
logger.info("Start training!")
# training bar
bar_desc = "Epoch: {current_epoch}, Loss: {loss}"
bar = None
if global_rank == 0:
max_steps = (
args.epochs * len(dataloader) if args.max_steps is None else args.max_steps
)
bar = tqdm.tqdm(total=max_steps, desc=bar_desc.format(current_epoch=0, loss=0))
bar.update(current_step)
logger.warning("Training Details: ")
logger.warning(f" Max steps: {max_steps}")
logger.warning(f" Dataset Samples: {len(dataloader)}")
logger.warning(
f" Total Batch Size: {args.batch_size} * {os.environ['WORLD_SIZE']}"
)
dist.barrier()
num_epochs = args.epochs
def update_bar(bar):
if global_rank == 0:
bar.desc = bar_desc.format(current_epoch=epoch, loss=f"-")
bar.update()
# training Loop
for epoch in range(num_epochs):
set_train(modules_to_train)
ddp_sampler.set_epoch(epoch) # Shuffle data at every epoch
for batch_idx, batch in enumerate(dataloader):
inputs = batch["video"].to(rank)
# select generator or discriminator
if (
current_step % 2 == 1
and current_step >= disc.module.discriminator_iter_start
):
set_modules_requires_grad(modules_to_train, False)
step_gen = False
step_dis = True
else:
set_modules_requires_grad(modules_to_train, True)
step_gen = True
step_dis = False
assert (
step_gen or step_dis
), "You should backward either Gen. or Dis. in a step."
# forward
with torch.amp.autocast('cuda', dtype=precision):
outputs = model(inputs)
recon = outputs.sample
posterior = outputs.latent_dist
wavelet_coeffs = None
if outputs.extra_output is not None and args.wavelet_loss:
wavelet_coeffs = outputs.extra_output
# generator loss
if step_gen:
with torch.amp.autocast('cuda', dtype=precision):
g_loss, g_log = disc(
inputs,
recon,
posterior,
optimizer_idx=0, # 0 - generator
global_step=current_step,
last_layer=model.module.get_last_layer(),
wavelet_coeffs=wavelet_coeffs,
split="train",
)
gen_optimizer.zero_grad()
scaler.scale(g_loss).backward()
scaler.step(gen_optimizer)
scaler.update()
# update ema
if args.ema:
ema.update()
# log to wandb
if global_rank == 0 and current_step % args.log_steps == 0:
wandb.log(
{"train/generator_loss": g_loss.item()}, step=current_step
)
wandb.log(
{"train/rec_loss": g_log['train/rec_loss']}, step=current_step
)
wandb.log(
{"train/latents_std": posterior.sample().std().item()}, step=current_step
)
# discriminator loss
if step_dis:
with torch.amp.autocast('cuda', dtype=precision):
d_loss, d_log = disc(
inputs,
recon,
posterior,
optimizer_idx=1,
global_step=current_step,
last_layer=None,
split="train",
)
disc_optimizer.zero_grad()
scaler.scale(d_loss).backward()
scaler.unscale_(disc_optimizer)
scaler.step(disc_optimizer)
scaler.update()
if global_rank == 0 and current_step % args.log_steps == 0:
wandb.log(
{"train/discriminator_loss": d_loss.item()}, step=current_step
)
update_bar(bar)
current_step += 1
# valid model
def valid_model(model, name=""):
set_eval(modules_to_train)
psnr_list, lpips_list, flickering_list, video_log = valid(
global_rank, rank, model, val_dataloader, precision, args
)
valid_psnr, valid_lpips, valid_flickering, valid_video_log = gather_valid_result(
psnr_list, lpips_list, flickering_list, video_log, rank, dist.get_world_size()
)
if global_rank == 0:
name = "_" + name if name != "" else name
wandb.log(
{
f"val{name}/recon": wandb.Video(
np.array(valid_video_log), fps=10
)
},
step=current_step,
)
wandb.log({f"val{name}/psnr": valid_psnr}, step=current_step)
wandb.log({f"val{name}/lpips": valid_lpips}, step=current_step)
wandb.log({f"val{name}/flickering": valid_flickering}, step=current_step)
logger.info(f"{name} Validation done.")
if current_step % args.eval_steps == 0 or current_step == 1:
if global_rank == 0:
logger.info("Starting validation...")
valid_model(model)
if args.ema:
ema.apply_shadow()
valid_model(model, "ema")
ema.restore()
# save checkpoint
if current_step % args.save_ckpt_step == 0 and global_rank == 0:
file_path = save_checkpoint(
epoch,
current_step,
{
"gen_optimizer": gen_optimizer.state_dict(),
"disc_optimizer": disc_optimizer.state_dict(),
},
{
"gen_model": model.module.state_dict(),
"dics_model": disc.module.state_dict(),
},
scaler.state_dict(),
ddp_sampler.state_dict(),
ckpt_dir,
f"checkpoint-{current_step}.ckpt",
ema_state_dict=ema.shadow if args.ema else {},
)
logger.info(f"Checkpoint has been saved to `{file_path}`.")
# end training
dist.destroy_process_group()
def main():
parser = argparse.ArgumentParser(description="Distributed Training")
# Exp setting
parser.add_argument(
"--exp_name", type=str, default="test", help="number of epochs to train"
)
parser.add_argument("--seed", type=int, default=1234, help="seed")
# Training setting
parser.add_argument(
"--epochs", type=int, default=10, help="number of epochs to train"
)
parser.add_argument(
"--max_steps", type=int, default=None, help="number of epochs to train"
)
parser.add_argument("--save_ckpt_step", type=int, default=1000, help="")
parser.add_argument("--ckpt_dir", type=str, default="./results/", help="")
parser.add_argument(
"--batch_size", type=int, default=1, help="batch size for training"
)
parser.add_argument("--lr", type=float, default=1e-5, help="learning rate")
parser.add_argument("--weight_decay", type=float, default=1e-4, help="weight decay")
parser.add_argument("--log_steps", type=int, default=5, help="log steps")
parser.add_argument("--freeze_encoder", action="store_true", help="")
parser.add_argument("--clip_grad_norm", type=float, default=1e5, help="")
# Data
parser.add_argument("--video_path", type=str, default=None, help="")
parser.add_argument("--num_frames", type=int, default=17, help="")
parser.add_argument("--resolution", type=int, default=256, help="")
parser.add_argument("--sample_rate", type=int, default=2, help="")
parser.add_argument("--dynamic_sample", action="store_true", help="")
# Generator model
parser.add_argument("--ignore_mismatched_sizes", action="store_true", help="")
parser.add_argument("--find_unused_parameters", action="store_true", help="")
parser.add_argument(
"--pretrained_model_name_or_path", type=str, default=None, help=""
)
parser.add_argument("--model_name", type=str, default=None, help="")
parser.add_argument("--resume_from_checkpoint", type=str, default=None, help="")
parser.add_argument("--not_resume_training_process", action="store_true", help="")
parser.add_argument("--enable_tiling", action="store_true", help="")
parser.add_argument("--model_config", type=str, default=None, help="")
parser.add_argument(
"--mix_precision",
type=str,
default="bf16",
choices=["fp16", "bf16", "fp32"],
help="precision for training",
)
parser.add_argument("--wavelet_loss", action="store_true", help="")
parser.add_argument("--not_resume_discriminator", action="store_true", help="")
parser.add_argument("--not_resume_optimizer", action="store_true", help="")
parser.add_argument("--wavelet_weight", type=float, default=0.1, help="")
# Discriminator Model
parser.add_argument("--load_disc_from_checkpoint", type=str, default=None, help="")
parser.add_argument(
"--disc_cls",
type=str,
default="causalvideovae.model.losses.LPIPSWithDiscriminator3D",
help="",
)
parser.add_argument("--disc_start", type=int, default=5, help="")
parser.add_argument("--disc_weight", type=float, default=0.5, help="")
parser.add_argument("--kl_weight", type=float, default=1e-06, help="")
parser.add_argument("--perceptual_weight", type=float, default=1.0, help="")
parser.add_argument("--loss_type", type=str, default="l1", help="")
parser.add_argument("--logvar_init", type=float, default=0.0, help="")
# Validation
parser.add_argument("--eval_steps", type=int, default=1000, help="")
parser.add_argument("--eval_video_path", type=str, default=None, help="")
parser.add_argument("--eval_num_frames", type=int, default=17, help="")
parser.add_argument("--eval_resolution", type=int, default=256, help="")
parser.add_argument("--eval_sample_rate", type=int, default=1, help="")
parser.add_argument("--eval_batch_size", type=int, default=8, help="")
parser.add_argument("--eval_subset_size", type=int, default=100, help="")
parser.add_argument("--eval_num_video_log", type=int, default=2, help="")
parser.add_argument("--eval_lpips", action="store_true", help="")
# Dataset
parser.add_argument("--dataset_num_worker", type=int, default=4, help="")
# EMA
parser.add_argument("--ema", action="store_true", help="")
parser.add_argument("--ema_decay", type=float, default=0.999, help="")
args = parser.parse_args()
set_random_seed(args.seed)
train(args)
if __name__ == "__main__":
main()