diff --git a/openpnm/_skgraph/generators/tools/_funcs.py b/openpnm/_skgraph/generators/tools/_funcs.py index 87f51ac151..1791f682c3 100644 --- a/openpnm/_skgraph/generators/tools/_funcs.py +++ b/openpnm/_skgraph/generators/tools/_funcs.py @@ -85,7 +85,7 @@ def get_centroid(pts, mode='rigorous'): if mode == 'rigorous': tri = sptl.Delaunay(pts) CoM = center_of_mass(simplices=tri.simplices.astype(np.int_), - points=tri.points.astype(np.float_)) + points=tri.points.astype(float)) elif mode == 'fast': CoM = pts.mean(axis=0) return CoM @@ -99,11 +99,11 @@ def get_centroid(pts, mode='rigorous'): # @njit def center_of_mass(simplices, points): A = [] - centroids = np.zeros((simplices.shape[0], points.shape[1]), dtype=np.float_) + centroids = np.zeros((simplices.shape[0], points.shape[1]), dtype=float) for i, s in enumerate(simplices): xy = points[s] cen = np.sum(points[s], axis=0)/simplices.shape[1] - centroids[i, :] = cen.astype(np.float_) + centroids[i, :] = cen.astype(float) if xy.shape[1] == 2: # In 2D # Use Heron's formula to find area of arbitrary triangle a = np.sqrt((xy[0, 0] - xy[1, 0])**2 + (xy[0, 1] - xy[1, 1])**2) @@ -117,9 +117,9 @@ def center_of_mass(simplices, points): temp = np.abs(np.linalg.det(d))/6.0 # temp = 0 A.append(temp) - A = np.array(A, dtype=np.float_) + A = np.array(A, dtype=float) CoM = np.array([(centroids[:, i]*A/A.sum()*len(A)).mean() - for i in range(centroids.shape[1])], dtype=np.float_) + for i in range(centroids.shape[1])], dtype=float) return CoM