-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathdla.py
executable file
·283 lines (253 loc) · 8.36 KB
/
dla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import ConvNormLayer
from ..shape_spec import ShapeSpec
DLA_cfg = {34: ([1, 1, 1, 2, 2, 1], [16, 32, 64, 128, 256, 512]), }
class BasicBlock(nn.Layer):
def __init__(self, ch_in, ch_out, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = ConvNormLayer(
ch_in,
ch_out,
filter_size=3,
stride=stride,
bias_on=False,
norm_decay=None)
self.conv2 = ConvNormLayer(
ch_out,
ch_out,
filter_size=3,
stride=1,
bias_on=False,
norm_decay=None)
def forward(self, inputs, residual=None):
if residual is None:
residual = inputs
out = self.conv1(inputs)
out = F.relu(out)
out = self.conv2(out)
out = paddle.add(x=out, y=residual)
out = F.relu(out)
return out
class Root(nn.Layer):
def __init__(self, ch_in, ch_out, kernel_size, residual):
super(Root, self).__init__()
self.conv = ConvNormLayer(
ch_in,
ch_out,
filter_size=1,
stride=1,
bias_on=False,
norm_decay=None)
self.residual = residual
def forward(self, inputs):
children = inputs
out = self.conv(paddle.concat(inputs, axis=1))
if self.residual:
out = paddle.add(x=out, y=children[0])
out = F.relu(out)
return out
class Tree(nn.Layer):
def __init__(self,
level,
block,
ch_in,
ch_out,
stride=1,
level_root=False,
root_dim=0,
root_kernel_size=1,
root_residual=False):
super(Tree, self).__init__()
if root_dim == 0:
root_dim = 2 * ch_out
if level_root:
root_dim += ch_in
if level == 1:
self.tree1 = block(ch_in, ch_out, stride)
self.tree2 = block(ch_out, ch_out, 1)
else:
self.tree1 = Tree(
level - 1,
block,
ch_in,
ch_out,
stride,
root_dim=0,
root_kernel_size=root_kernel_size,
root_residual=root_residual)
self.tree2 = Tree(
level - 1,
block,
ch_out,
ch_out,
1,
root_dim=root_dim + ch_out,
root_kernel_size=root_kernel_size,
root_residual=root_residual)
if level == 1:
self.root = Root(root_dim, ch_out, root_kernel_size, root_residual)
self.level_root = level_root
self.root_dim = root_dim
self.downsample = None
self.project = None
self.level = level
if stride > 1:
self.downsample = nn.MaxPool2D(stride, stride=stride)
if ch_in != ch_out:
self.project = ConvNormLayer(
ch_in,
ch_out,
filter_size=1,
stride=1,
bias_on=False,
norm_decay=None)
def forward(self, x, residual=None, children=None):
children = [] if children is None else children
bottom = self.downsample(x) if self.downsample else x
residual = self.project(bottom) if self.project else bottom
if self.level_root:
children.append(bottom)
x1 = self.tree1(x, residual)
if self.level == 1:
x2 = self.tree2(x1)
x = self.root([x2, x1] + children)
else:
children.append(x1)
x = self.tree2(x1, children=children)
return x
@register
@serializable
class DLA(nn.Layer):
"""
DLA, see https://arxiv.org/pdf/1707.06484.pdf
Args:
depth (int): DLA depth, only support 34 now.
residual_root (bool): whether use a reidual layer in the root block
pre_img (bool): add pre_img, only used in CenterTrack
pre_hm (bool): add pre_hm, only used in CenterTrack
"""
def __init__(self,
depth=34,
residual_root=False,
pre_img=False,
pre_hm=False):
super(DLA, self).__init__()
assert depth == 34, 'Only support DLA with depth of 34 now.'
if depth == 34:
block = BasicBlock
levels, channels = DLA_cfg[depth]
self.channels = channels
self.num_levels = len(levels)
self.base_layer = nn.Sequential(
ConvNormLayer(
3,
channels[0],
filter_size=7,
stride=1,
bias_on=False,
norm_decay=None),
nn.ReLU())
self.level0 = self._make_conv_level(channels[0], channels[0], levels[0])
self.level1 = self._make_conv_level(
channels[0], channels[1], levels[1], stride=2)
self.level2 = Tree(
levels[2],
block,
channels[1],
channels[2],
2,
level_root=False,
root_residual=residual_root)
self.level3 = Tree(
levels[3],
block,
channels[2],
channels[3],
2,
level_root=True,
root_residual=residual_root)
self.level4 = Tree(
levels[4],
block,
channels[3],
channels[4],
2,
level_root=True,
root_residual=residual_root)
self.level5 = Tree(
levels[5],
block,
channels[4],
channels[5],
2,
level_root=True,
root_residual=residual_root)
if pre_img:
self.pre_img_layer = nn.Sequential(
ConvNormLayer(
3,
channels[0],
filter_size=7,
stride=1,
bias_on=False,
norm_decay=None),
nn.ReLU())
if pre_hm:
self.pre_hm_layer = nn.Sequential(
ConvNormLayer(
1,
channels[0],
filter_size=7,
stride=1,
bias_on=False,
norm_decay=None),
nn.ReLU())
self.pre_img = pre_img
self.pre_hm = pre_hm
def _make_conv_level(self, ch_in, ch_out, conv_num, stride=1):
modules = []
for i in range(conv_num):
modules.extend([
ConvNormLayer(
ch_in,
ch_out,
filter_size=3,
stride=stride if i == 0 else 1,
bias_on=False,
norm_decay=None), nn.ReLU()
])
ch_in = ch_out
return nn.Sequential(*modules)
@property
def out_shape(self):
return [
ShapeSpec(channels=self.channels[i]) for i in range(self.num_levels)
]
def forward(self, inputs):
outs = []
feats = self.base_layer(inputs['image'])
if self.pre_img and 'pre_image' in inputs and inputs[
'pre_image'] is not None:
feats = feats + self.pre_img_layer(inputs['pre_image'])
if self.pre_hm and 'pre_hm' in inputs and inputs['pre_hm'] is not None:
feats = feats + self.pre_hm_layer(inputs['pre_hm'])
for i in range(self.num_levels):
feats = getattr(self, 'level{}'.format(i))(feats)
outs.append(feats)
return outs