-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathvgg.py
executable file
·210 lines (179 loc) · 6.41 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from __future__ import division
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn import Conv2D, MaxPool2D
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
__all__ = ['VGG']
VGG_cfg = {16: [2, 2, 3, 3, 3], 19: [2, 2, 4, 4, 4]}
class ConvBlock(nn.Layer):
def __init__(self,
in_channels,
out_channels,
groups,
pool_size=2,
pool_stride=2,
pool_padding=0,
name=None):
super(ConvBlock, self).__init__()
self.groups = groups
self.conv0 = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=1,
padding=1)
self.conv_out_list = []
for i in range(1, groups):
conv_out = self.add_sublayer(
'conv{}'.format(i),
Conv2D(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=1,
padding=1))
self.conv_out_list.append(conv_out)
self.pool = MaxPool2D(
kernel_size=pool_size,
stride=pool_stride,
padding=pool_padding,
ceil_mode=True)
def forward(self, inputs):
out = self.conv0(inputs)
out = F.relu(out)
for conv_i in self.conv_out_list:
out = conv_i(out)
out = F.relu(out)
pool = self.pool(out)
return out, pool
class ExtraBlock(nn.Layer):
def __init__(self,
in_channels,
mid_channels,
out_channels,
padding,
stride,
kernel_size,
name=None):
super(ExtraBlock, self).__init__()
self.conv0 = Conv2D(
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=1,
stride=1,
padding=0)
self.conv1 = Conv2D(
in_channels=mid_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding)
def forward(self, inputs):
out = self.conv0(inputs)
out = F.relu(out)
out = self.conv1(out)
out = F.relu(out)
return out
class L2NormScale(nn.Layer):
def __init__(self, num_channels, scale=1.0):
super(L2NormScale, self).__init__()
self.scale = self.create_parameter(
attr=ParamAttr(initializer=paddle.nn.initializer.Constant(scale)),
shape=[num_channels])
def forward(self, inputs):
out = F.normalize(inputs, axis=1, epsilon=1e-10)
# out = self.scale.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(
# out) * out
out = self.scale.unsqueeze(0).unsqueeze(2).unsqueeze(3) * out
return out
@register
@serializable
class VGG(nn.Layer):
def __init__(self,
depth=16,
normalizations=[20., -1, -1, -1, -1, -1],
extra_block_filters=[[256, 512, 1, 2, 3], [128, 256, 1, 2, 3],
[128, 256, 0, 1, 3],
[128, 256, 0, 1, 3]]):
super(VGG, self).__init__()
assert depth in [16, 19], \
"depth as 16/19 supported currently, but got {}".format(depth)
self.depth = depth
self.groups = VGG_cfg[depth]
self.normalizations = normalizations
self.extra_block_filters = extra_block_filters
self._out_channels = []
self.conv_block_0 = ConvBlock(
3, 64, self.groups[0], 2, 2, 0, name="conv1_")
self.conv_block_1 = ConvBlock(
64, 128, self.groups[1], 2, 2, 0, name="conv2_")
self.conv_block_2 = ConvBlock(
128, 256, self.groups[2], 2, 2, 0, name="conv3_")
self.conv_block_3 = ConvBlock(
256, 512, self.groups[3], 2, 2, 0, name="conv4_")
self.conv_block_4 = ConvBlock(
512, 512, self.groups[4], 3, 1, 1, name="conv5_")
self._out_channels.append(512)
self.fc6 = Conv2D(
in_channels=512,
out_channels=1024,
kernel_size=3,
stride=1,
padding=6,
dilation=6)
self.fc7 = Conv2D(
in_channels=1024,
out_channels=1024,
kernel_size=1,
stride=1,
padding=0)
self._out_channels.append(1024)
# extra block
self.extra_convs = []
last_channels = 1024
for i, v in enumerate(self.extra_block_filters):
assert len(v) == 5, "extra_block_filters size not fix"
extra_conv = self.add_sublayer("conv{}".format(6 + i),
ExtraBlock(last_channels, v[0], v[1],
v[2], v[3], v[4]))
last_channels = v[1]
self.extra_convs.append(extra_conv)
self._out_channels.append(last_channels)
self.norms = []
for i, n in enumerate(self.normalizations):
if n != -1:
norm = self.add_sublayer("norm{}".format(i),
L2NormScale(
self.extra_block_filters[i][1], n))
else:
norm = None
self.norms.append(norm)
def forward(self, inputs):
outputs = []
conv, pool = self.conv_block_0(inputs['image'])
conv, pool = self.conv_block_1(pool)
conv, pool = self.conv_block_2(pool)
conv, pool = self.conv_block_3(pool)
outputs.append(conv)
conv, pool = self.conv_block_4(pool)
out = self.fc6(pool)
out = F.relu(out)
out = self.fc7(out)
out = F.relu(out)
outputs.append(out)
if not self.extra_block_filters:
return outputs
# extra block
for extra_conv in self.extra_convs:
out = extra_conv(out)
outputs.append(out)
for i, n in enumerate(self.normalizations):
if n != -1:
outputs[i] = self.norms[i](outputs[i])
return outputs
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]