-
Notifications
You must be signed in to change notification settings - Fork 140
/
run_predict.py
159 lines (130 loc) · 4.81 KB
/
run_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from dataclasses import dataclass, field
from types import SimpleNamespace
import paddle
from paddlenlp.trainer import PdArgumentParser
from PIL import Image
from paddlemix import ImageBindModel, ImageBindProcessor
from paddlemix.datasets import * # noqa: F401,F403
from paddlemix.models import * # noqa: F401,F403
from paddlemix.models.imagebind.utils import * # noqa: F401,F403
from paddlemix.utils.log import logger
from ppdiffusers.utils import load_image
ModalityType = SimpleNamespace(
VISION="vision",
TEXT="text",
AUDIO="audio",
THERMAL="thermal",
DEPTH="depth",
IMU="imu",
)
class Predictor:
def __init__(self, model_args):
self.processor = ImageBindProcessor.from_pretrained(model_args.model_name_or_path)
self.predictor = ImageBindModel.from_pretrained(model_args.model_name_or_path)
self.predictor.eval()
def run(self, inputs):
with paddle.no_grad():
embeddings = self.predictor(inputs)
return embeddings
def main(model_args, data_args):
# build model
logger.info("imagebind_model: {}".format(model_args.model_name_or_path))
url = data_args.input_image
if os.path.isfile(url):
# read image
image_pil = Image.open(data_args.input_image).convert("RGB")
elif url:
image_pil = load_image(url)
else:
image_pil = None
url = data_args.input_audio
if os.path.isfile(url):
# read image
input_audio = data_args.input_audio
elif url:
os.system("wget {}".format(url))
input_audio = os.path.basename(data_args.input_audio)
else:
input_audio = None
predictor = Predictor(model_args)
encoding = predictor.processor(
images=image_pil,
text=data_args.input_text,
audios=input_audio,
return_tensors="pd",
)
inputs = {}
if data_args.input_text:
tokenized_processor = encoding["input_ids"]
inputs.update({ModalityType.TEXT: tokenized_processor})
# input.update()
if image_pil:
image_processor = encoding["pixel_values"]
inputs.update({ModalityType.VISION: image_processor})
if input_audio:
audio_processor = encoding["audio_values"]
inputs.update({ModalityType.AUDIO: audio_processor})
embeddings = predictor.run(inputs)
if data_args.input_text:
logger.info("Generate text: {}".format(embeddings[ModalityType.TEXT]))
if image_pil:
logger.info("Generate vision: {}".format(embeddings[ModalityType.VISION]))
if input_audio:
logger.info("Generate audio: {}".format(embeddings[ModalityType.AUDIO]))
@dataclass
class DataArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `PdArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
input_text: str = field(default="A dog.", metadata={"help": "The name of imagebind text input."})
input_image: str = field(
default="",
# wget https://github.com/facebookresearch/ImageBind/blob/main/.assets/bird_image.jpg
metadata={"help": "The name of imagebind image input."},
)
input_audio: str = field(
default=None,
# wget https://github.com/facebookresearch/ImageBind/blob/main/.assets/bird_audio.wav
metadata={"help": "The name of imagebind audio input."},
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default="imagebind-1.2b/",
metadata={"help": "Path to pretrained model or model identifier"},
)
device: str = field(
default="GPU",
metadata={"help": "Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."},
)
if __name__ == "__main__":
parser = PdArgumentParser((ModelArguments, DataArguments))
model_args, data_args = parser.parse_args_into_dataclasses()
model_args.device = model_args.device.upper()
assert model_args.device in [
"CPU",
"GPU",
"XPU",
"NPU",
], "device should be CPU, GPU, XPU or NPU"
main(model_args, data_args)