-
Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathcreate_pretraining_data.py
384 lines (314 loc) · 14 KB
/
create_pretraining_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import io
import json
import multiprocessing
import os
import re
import sys
import time
import numpy as np
from tqdm import tqdm
from paddlenlp.data import indexed_dataset
from paddlenlp.transformers import AutoTokenizer
from paddlenlp.utils.log import logger
try:
import nltk
nltk_available = True
except ImportError:
nltk_available = False
from datetime import datetime
def print_datetime(string):
time_str = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print("[" + string + "] datetime: {} ".format(time_str))
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", type=str, required=True, help="What model to use.")
group = parser.add_argument_group(title="data input/output")
group.add_argument("--input_path", type=str, required=True, help="Path to input JSON files.")
group.add_argument("--output_prefix", type=str, required=True, help="Output prefix to store output file.")
group.add_argument(
"--data_format",
type=str,
default="text",
choices=["JSON"],
help="Only support json format for now. One document per line.",
)
group.add_argument(
"--json_key",
type=str,
default="text",
help="For JSON format. Space separate listed of keys to extract from json",
)
group.add_argument("--split_sentences", action="store_true", help="Split documents into sentences.")
group.add_argument("--data_impl", type=str, default="mmap", choices=["lazy", "mmap"])
group = parser.add_argument_group(title="chinese words")
group.add_argument(
"--chinese", action="store_true", help="Is corpus need words segmentation step for chinese words."
)
group.add_argument(
"--cn_whole_word_segment",
action="store_true",
help="Is corpus need words segmentation step for chinese words WWM.",
)
group.add_argument(
"--cn_seg_func",
type=str,
default="jieba",
choices=["lac", "seg", "jieba"],
help="Words segment function for chinese words.",
)
group.add_argument("--cn_splited", action="store_true", help="Is chinese corpus is splited in to words.")
group.add_argument("--cn_split_dimer", type=str, default=" ", help="Split dimer between chinese words.")
group = parser.add_argument_group(title="common config")
group.add_argument("--append_eos", action="store_true", help="Append an <eos> token to the end of a document.")
group.add_argument("--log_interval", type=int, default=100, help="Interval between progress updates")
group.add_argument("--workers", type=int, default=1, help="Number of worker processes to launch")
group.add_argument("--max_doc_num", type=int, default=sys.maxsize, help="Stop when reach max_doc_num.")
group.add_argument(
"--max_repeated_len", type=int, default=100, help="The maximum length of the repeated characters to keep"
)
args = parser.parse_args()
return args
def lexical_analysis_fn():
from LAC import LAC
lac = LAC(mode="lac")
def process(line):
words, _ = lac.run(line)
return words
return process
def chinese_segmentation_fn():
from LAC import LAC
lac_cws = LAC(mode="seg")
def process(line):
words = lac_cws.run(line)
return words
return process
def jieba_segmentation_fn():
import jieba
def process(line):
words = jieba.cut(line)
return list(words)
return process
def get_whole_word_mask_tokens(tokens, words, max_word_length=6):
"""
Do whole word mask on Chinese word.
First, we do Chinese word segmentation on the sequence of tokens, which are from the WordPiece tokenization.
Then, we add the '##' mark on chinese characters which are in the middle of Chinese words.
And if the tokens are not chinese characters, we just exploit the results of WordPiece tokenization as words.
Such as,
- text line : 通过利用mercer核,将样本从输入空间映射到高维特征空间,使原来没有显现的特征突现出来,取得了很好的图像分割效果。
- the input tokens (after WordPiece):
['通', '过', '利', '用', 'me', '##rc', '##er', '核', ',', '将', '样', '本', '从', '输', '入', '空', '间', '映',
'射', '到', '高', '维', '特', '征', '空', '间', ',', '使', '原', '来', '没', '有', '显', '现', '的', '特', '征',
'突', '现', '出', '来', ',', '取', '得', '了', '很', '好', '的', '图', '像', '分', '割', '效', '果', '。']
- the Chinese words (after Chinese word segmentation like jieba)
['通过', '利用', 'mercer', '核', ',', '将', '样本', '从', '输入', '空间', '映射', '到', '高维', '特征',
'空间', ',', '使', '原来', '没有', '显现', '的', '特征', '突现', '出来', ',', '取得', '了', '很', '好',
'的', '图像', '分割', '效果', '。']
- the output whole word mask tokens:
['通', '##过', '利', '##用', 'me', '##rc', '##er', '核', ',', '将', '样', '##本', '从', '输', '##入',
'空', '##间', '映', '##射', '到', '高', '##维', '特', '##征', '空', '##间', ',', '使', '原', '##来',
'没', '##有', '显', '##现', '的', '特', '##征', '突', '##现', '出', '##来', ',', '取', '##得', '了',
'很', '好', '的', '图', '##像', '分', '##割', '效', '##果', '。']
Args:
tokens(list(str)): The sequence of tokens, which are from the WordPiece tokenization.
words(list(str)): The sequence of Chinese words.
max_word_length(int, optional):
The maximum chinese character in Chinese words. It avoids too long Chinese word to be masked.
Defaults as 4.
Returns:
new_tokens(list(str)): The new token will be done with whole word masking strategy.
"""
new_tokens = []
# opt for long document
words_set = set(words)
i = 0
while i < len(tokens):
# non-chinese character, then do word piece
if len(re.findall("[\u4E00-\u9FA5]", tokens[i])) == 0:
new_tokens.append(tokens[i])
i += 1
continue
# add "##" mark on the middel tokens of Chinese words
# such as ["通过", "利用"] -> ["通", "##过", "利", "##用"]
has_add = False
for length in range(max_word_length, 0, -1):
if i + length > len(tokens):
continue
if "".join(tokens[i : i + length]) in words_set:
new_tokens.append(tokens[i])
for l in range(1, length):
new_tokens.append("##" + tokens[i + l])
i += length
has_add = True
break
if not has_add:
new_tokens.append(tokens[i])
i += 1
return new_tokens
class IdentitySplitter(object):
def tokenize(self, *text):
return text
class NewlineSplitter:
def tokenize(self, text):
return text.split("\n")
class Converter(object):
def __init__(self, args):
self.args = args
def initializer(self):
Converter.tokenizer = AutoTokenizer.from_pretrained(self.args.model_name_or_path)
if self.args.cn_whole_word_segment:
# Extend chinese char vocab for ErnieTokinzer
Converter.tokenizer.extend_chinese_char()
# Split document to sentence.
if self.args.split_sentences:
if self.args.chinese:
Converter.splitter = NewlineSplitter()
else:
if not nltk_available:
print("NLTK is not available to split sentences.")
exit()
splitter = nltk.load("tokenizers/punkt/english.pickle")
Converter.splitter = splitter
else:
Converter.splitter = IdentitySplitter()
# Split sentence whole words mask for chinese
if self.args.cn_whole_word_segment:
if self.args.cn_splited:
Converter.segment_func = lambda text: text.split(self.args.cn_split_dimer)
else:
CHINESE_SEG_FUNC = {
"lac": lexical_analysis_fn(),
"seg": chinese_segmentation_fn(),
"jieba": jieba_segmentation_fn(),
}
Converter.segment_func = CHINESE_SEG_FUNC[self.args.cn_seg_func]
Converter.whole_word_mask = get_whole_word_mask_tokens
else:
Converter.segment_func = lambda x: x
Converter.whole_word_mask = lambda x, y: x
def process(text):
words = Converter.segment_func(text)
# if there are two empty word, the should a split dimer in the pos
if self.args.cn_splited:
pre_dimer = False
for index, w in enumerate(words):
if pre_dimer and len(w) == 0:
words[index] = self.args.cn_split_dimer
pre_dimer = False
elif len(w) == 0:
pre_dimer = True
else:
pre_dimer = False
tokens = Converter.tokenizer.tokenize("".join(words))
tokens = Converter.whole_word_mask(tokens, words)
tokens = Converter.tokenizer.convert_tokens_to_ids(tokens)
return tokens
Converter.process = process
def remove_repeated_chars(text, max_repeated_len=100):
"""
Removes repeated characters from the given text, where the length of
the repeated characters is greater than or equal to the specified length.
Args:
text (str): The input text from which to remove repeated characters.
length (int, optional): The minimum length of the repeated characters. Defaults to 15.
Returns:
str: The modified text with the repeated characters removed.
"""
pattern = r"(.)\1{" + str(max_repeated_len) + ",}"
return re.sub(pattern, r"\1", text)
def encode(self, json_line):
text = json.loads(json_line)[self.args.json_key]
text = Converter.remove_repeated_chars(text, self.args.max_repeated_len)
doc_ids = []
for sentence in Converter.splitter.tokenize(text):
sentence_ids = Converter.process(sentence.strip())
if len(sentence_ids) > 0:
doc_ids.append(sentence_ids)
if len(doc_ids) > 0 and self.args.append_eos:
if Converter.tokenizer.eos_token_id is None:
logger.warning(
"{}: eos_token_id is not set, ".format(self.args.tokenizer_name)
+ "please set other tokenizer "
+ "or config eos_token_id or unset append_eos."
)
else:
doc_ids[-1].append(Converter.tokenizer.eos_token_id)
return doc_ids, len(text.encode("utf-8"))
def main():
print_datetime("start")
args = get_args()
file_paths = []
if os.path.isfile(args.input_path):
file_paths.append(args.input_path)
else:
for root, _, fs in os.walk(args.input_path):
for f in fs:
file_paths.append(os.path.join(root, f))
convert = Converter(args)
# Try tokenizer is available
sample_tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
if sample_tokenizer.vocab_size < 2**16 - 1:
save_dtype = np.uint16
else:
save_dtype = np.int32
pool = multiprocessing.Pool(args.workers, initializer=convert.initializer)
output_ids_files = args.output_prefix + ".bin"
output_idx_files = args.output_prefix + ".idx"
builder = indexed_dataset.make_builder(output_ids_files, args.data_impl, save_dtype)
file_paths.sort()
step = 0
total_bytes_processed = 0
startup_start = time.time()
for file_path in tqdm(file_paths):
if file_path.endswith(".zst"):
import zstandard
cctx = zstandard.ZstdDecompressor()
fh = open(file_path, "rb")
text = io.BufferedReader(cctx.stream_reader(fh))
elif file_path.endswith(".jsonl"):
text = open(file_path, "r", encoding="utf-8")
else:
print("Unexpected data format, skiped %s" % file_path)
continue
encoded_docs = pool.imap(convert.encode, text, 256)
print("Processing %s" % file_path)
for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
step += 1
total_bytes_processed += bytes_processed
if len(doc) == 0:
continue
for sentence in doc:
sentence_len = len(sentence)
if sentence_len == 0:
continue
builder.add_item(sentence)
builder.end_document()
if step % args.log_interval == 0:
current = time.time()
elapsed = current - startup_start
mbs = total_bytes_processed / elapsed / 1024 / 1024
print(f"Processed {step} documents", f"({step/elapsed:.2f} docs/s, {mbs:.4f} MB/s).", file=sys.stderr)
if step >= args.max_doc_num:
break
if step >= args.max_doc_num:
break
pool.close()
print("Saving tokens to files...")
builder.finalize(output_idx_files)
print_datetime("end")
if __name__ == "__main__":
main()