-
Notifications
You must be signed in to change notification settings - Fork 645
/
Copy pathnet.py
111 lines (97 loc) · 4.3 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
class ESMMLayer(nn.Layer):
def __init__(self, sparse_feature_number, sparse_feature_dim, num_field,
ctr_layer_sizes, cvr_layer_sizes):
super(ESMMLayer, self).__init__()
self.sparse_feature_number = sparse_feature_number
self.sparse_feature_dim = sparse_feature_dim
self.num_field = num_field
self.ctr_layer_sizes = ctr_layer_sizes
self.cvr_layer_sizes = cvr_layer_sizes
use_sparse = True
if paddle.is_compiled_with_custom_device('npu'):
use_sparse = False
self.embedding = paddle.nn.Embedding(
self.sparse_feature_number,
self.sparse_feature_dim,
sparse=use_sparse,
padding_idx=0,
weight_attr=paddle.ParamAttr(
name="SparseFeatFactors",
initializer=paddle.nn.initializer.Uniform()))
# ctr part
ctr_sizes = [sparse_feature_dim * num_field
] + self.ctr_layer_sizes + [2]
acts = ["relu" for _ in range(len(self.ctr_layer_sizes))] + [None]
self._ctr_mlp_layers = []
for i in range(len(ctr_layer_sizes) + 1):
linear = paddle.nn.Linear(
in_features=ctr_sizes[i],
out_features=ctr_sizes[i + 1],
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Normal(
std=1.0 / math.sqrt(ctr_sizes[i]))))
self.add_sublayer('linear_%d' % i, linear)
self._ctr_mlp_layers.append(linear)
if acts[i] == 'relu':
act = paddle.nn.ReLU()
self.add_sublayer('act_%d' % i, act)
self._ctr_mlp_layers.append(act)
# ctr part
cvr_sizes = [sparse_feature_dim * num_field
] + self.cvr_layer_sizes + [2]
acts = ["relu" for _ in range(len(self.cvr_layer_sizes))] + [None]
self._cvr_mlp_layers = []
for i in range(len(cvr_layer_sizes) + 1):
linear = paddle.nn.Linear(
in_features=cvr_sizes[i],
out_features=cvr_sizes[i + 1],
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Normal(
std=1.0 / math.sqrt(cvr_sizes[i]))))
self.add_sublayer('linear_%d' % (len(ctr_layer_sizes) + 1 + i),
linear)
self._cvr_mlp_layers.append(linear)
if acts[i] == 'relu':
act = paddle.nn.ReLU()
self.add_sublayer('act_%d' % i, act)
self._cvr_mlp_layers.append(act)
def forward(self, inputs):
emb = []
# input feature data
for data in inputs:
feat_emb = self.embedding(data)
# sum pooling
feat_emb = paddle.sum(feat_emb, axis=1)
emb.append(feat_emb)
concat_emb = paddle.concat(x=emb, axis=1)
ctr_output = concat_emb
for n_layer in self._ctr_mlp_layers:
ctr_output = n_layer(ctr_output)
ctr_out = F.softmax(ctr_output)
cvr_output = concat_emb
for n_layer in self._cvr_mlp_layers:
cvr_output = n_layer(cvr_output)
cvr_out = F.softmax(cvr_output)
ctr_prop_one = paddle.slice(ctr_out, axes=[1], starts=[1], ends=[2])
cvr_prop_one = paddle.slice(cvr_out, axes=[1], starts=[1], ends=[2])
ctcvr_prop_one = paddle.multiply(x=ctr_prop_one, y=cvr_prop_one)
ctcvr_prop = paddle.concat(
x=[1 - ctcvr_prop_one, ctcvr_prop_one], axis=1)
return ctr_out, ctr_prop_one, cvr_out, cvr_prop_one, ctcvr_prop, ctcvr_prop_one