-
Notifications
You must be signed in to change notification settings - Fork 725
/
dygraph_model.py
113 lines (97 loc) · 4.43 KB
/
dygraph_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
import net
class DygraphModel():
# define model
def create_model(self, config):
sparse_feature_number = config.get(
"hyper_parameters.sparse_feature_number")
sparse_feature_dim = config.get("hyper_parameters.sparse_feature_dim")
fc_sizes = config.get("hyper_parameters.fc_sizes")
sparse_fea_num = config.get('hyper_parameters.sparse_fea_num')
dense_feature_dim = config.get('hyper_parameters.dense_input_dim')
sparse_input_slot = config.get('hyper_parameters.sparse_inputs_slots')
deepfefm_model = net.DeepFEFMLayer(
sparse_feature_number, sparse_feature_dim, dense_feature_dim,
sparse_input_slot - 1, fc_sizes)
return deepfefm_model
# define feeds which convert numpy of batch data to paddle.tensor
def create_feeds(self, batch_data, config):
dense_feature_dim = config.get('hyper_parameters.dense_input_dim')
sparse_tensor = []
for b in batch_data[:-1]:
sparse_tensor.append(
paddle.to_tensor(b.numpy().astype('int64').reshape(-1, 1)))
dense_tensor = paddle.to_tensor(batch_data[-1].numpy().astype(
'float32').reshape(-1, dense_feature_dim))
label = sparse_tensor[0]
return label, sparse_tensor[1:], dense_tensor
# define loss function by predicts and label
def create_loss(self, pred, label):
cost = paddle.nn.functional.log_loss(
input=pred, label=paddle.cast(
label, dtype="float32"))
avg_cost = paddle.mean(x=cost)
return avg_cost
# define optimizer
def create_optimizer(self, dy_model, config):
lr = config.get("hyper_parameters.optimizer.learning_rate", 0.001)
opt = config.get("hyper_parameters.optimizer.class", 'Adam')
if opt == 'Adagrad':
optimizer = paddle.optimizer.Adagrad(
learning_rate=lr,
parameters=dy_model.parameters(),
weight_decay=None)
elif opt == 'AdamW':
optimizer = paddle.optimizer.AdamW(
learning_rate=lr,
parameters=dy_model.parameters(),
weight_decay=None)
else:
optimizer = paddle.optimizer.Adam(
learning_rate=lr,
parameters=dy_model.parameters(),
weight_decay=None) # 2e-6
return optimizer
# define metrics such as auc/acc
# multi-task need to define multi metric
def create_metrics(self):
metrics_list_name = ["auc"]
auc_metric = paddle.metric.Auc("ROC")
metrics_list = [auc_metric]
return metrics_list, metrics_list_name
# construct train forward phase
def train_forward(self, dy_model, metrics_list, batch_data, config):
label, sparse_tensor, dense_tensor = self.create_feeds(batch_data,
config)
pred = dy_model.forward(sparse_tensor, dense_tensor)
loss = self.create_loss(pred, label)
# update metrics
predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
metrics_list[0].update(preds=predict_2d.numpy(), labels=label.numpy())
print_dict = {'loss': loss}
# print_dict = None
return loss, metrics_list, print_dict
def infer_forward(self, dy_model, metrics_list, batch_data, config):
label, sparse_tensor, dense_tensor = self.create_feeds(batch_data,
config)
pred = dy_model.forward(sparse_tensor, dense_tensor)
# update metrics
predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
metrics_list[0].update(preds=predict_2d.numpy(), labels=label.numpy())
return metrics_list, None