-
Values of User Exploration in Recommender Systems
Author(Institute): Minmin Chen(Google)
KeyWords: reinforcement learning; exploration; serendipity; recommender systems -
Mitigating Confounding Bias in Recommendation via Information Bottleneck
Author(Institute): Pengxiang Cheng(Huawei二作)
KeyWords: bias; information bottleneck -
Cold Start Similar Artists Ranking with Gravity-Inspired Graph Autoencoders
Author(Institute): GUILLAUME SALHA-GALVAN(Deezer)
KeyWords: Music Recommendation; Music Streaming Services; Cold Start; Similar Music Artists; Ranking; Directed Graphs; Autoencoders; Variational Autoencoders; Graph Representation Learning; Node Embedding; Link Prediction
Dataset: deezer -
Shared Neural Item Representations for Completely Cold Start Problem
Author(Institute): Ramin Raziperchikolaei(Rakuten)
KeyWords: cold start; item representations -
Evaluating Off-Policy Evaluation: Sensitivity and Robustness
Author(Institute): Takuma Udagawa(Sony二作)
KeyWords: Off-policy Evaluation
Dataset: OptDigits; PenDigits; SatImage -
Towards Unified Metrics for Accuracy and Diversity for Recommender Systems
Author(Institute): Takuma Udagawa(Sony二作)
KeyWords: diversity; recommender systems; offline evaluation; metrics
Dataset: Movielens -
Transformers4Rec: Bridging the Gap between NLP and Sequential / Session-Based Recommendation
Author(Institute): Gabriel de Souza Pereira Moreira(NVIDIA)
KeyWords: sequential recommendation
Dataset: REES46 eCommerce; YOOCHOOSE eCommerce -
Denoising User-aware Memory Network for Recommendation
Author(Institute): ZHI BIAN(Alibaba)
KeyWords: Recommendation; Deep neural networks; Denoising
Dataset: Alibaba -
Large-Scale Modeling of Mobile User Click Behaviors Using Deep Learning
Author(Institute): Xin Zhou(Google)
KeyWords: User behavior modeling; predictive user interfaces; mobile interaction; click prediction; deep learning -
EX3: Explainable Attribute-aware Item-set Recommendations
Author(Institute): TONG ZHAO(Amazon二作)
KeyWords: Recommender system; Explainable recommendation; Item set recommendation
Dataset: Amazon -
Tops, Bottoms, and Shoes: Building Capsule Wardrobes via Cross-Attention Tensor Network
Author(Institute): Huiyuan Chen(Visa)
KeyWords: Fashion Recommendation; Neural Tensor Network; Cross-Attentionl Linear Attention
Dataset: Polyvore; iFashion -
Local Factor Models for Large-Scale Inductive Recommendation
Author(Institute): Longqi Yang(Microsoft)
KeyWords: Recommendation; local model; large-scale; end-to-end
Dataset: Web-35M; LastFM-17M; Movielens-10M -
Learning to Represent Human Motives for Goal-directed Web Browsing
Author(Institute): Chia-Jung Lee(Amazon二作); Longqi Yang(Microsoft三作)
KeyWords: User Behavior; User Goals; Web Browser Session Modeling; Goal Representation Learning
Dataset: GoWeB -
Accordion: A Trainable Simulator for Long-Term Interactive Systems
Author(Institute): James McInerney(Netflix);
KeyWords: Poisson Process; Deep Learning; Simulation
Dataset: ContentWise impressions -
Hierarchical Latent Relation Modeling for Collaborative Metric Learning
Author(Institute): VIET-ANH TRAN(Deezer)
KeyWords: Collaborative Metric Learning; Relation Modeling; Attention Mechanisms; Recommender Systems
Dataset: MovieLens; Echonest; Yelp; Amazon book -
Matrix Factorization for Collaborative Filtering Is Just Solving an Adjoint Latent Dirichlet Allocation Model After All
Author(Institute): Florian Wilhelm(inovex GmbH)
KeyWords: Matrix factorization; Collaborative filtering -
Negative Interactions for Improved Collaborative-Filtering: Don’t go Deeper, go Higher
Author(Institute): Harald Steck(Netflix);
KeyWords: collaborative filtering; recommender systems; linear models; higher order interactions
Dataset: ML-20M; Netflix; MSD -
Page-level Optimization of e-Commerce Item Recommendations
Author(Institute): CHIEH LO(eBay)
KeyWords: A/B testing; page-level optimization