This example contains code used to train a rhythm version of Fastspeech2 model with Chinese Standard Mandarin Speech Copus.
Download CSMSC from it's Official Website and extract it to ~/datasets
. Then the dataset is in the directory ~/datasets/BZNSYP
.
We use MFA to get durations for fastspeech2.
You can directly download the rhythm version of MFA result from here baker_alignment_tone.zip, or train your MFA model reference to mfa example of our repo.
Remember in our repo, you should add --rhy-with-duration
flag to obtain the rhythm information.
Assume the path to the dataset is ~/datasets/BZNSYP
.
Assume the path to the MFA result of CSMSC is ./baker_alignment_tone
.
Run the command below to
- source path.
- preprocess the dataset.
- train the model.
- synthesize wavs.
- synthesize waveform from
metadata.jsonl
. - synthesize waveform from a text file.
- synthesize waveform from
- inference using the static model.
./run.sh
You can choose a range of stages you want to run, or set stage
equal to stop-stage
to use only one stage, for example, running the following command will only preprocess the dataset.
./run.sh --stage 0 --stop-stage 0
./local/preprocess.sh ${conf_path}
When it is done. A dump
folder is created in the current directory. The structure of the dump folder is listed below.
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── energy_stats.npy
├── norm
├── pitch_stats.npy
├── raw
└── speech_stats.npy
The dataset is split into 3 parts, namely train
, dev
, and test
, each of which contains a norm
and raw
subfolder. The raw folder contains speech、pitch and energy features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in dump/train/*_stats.npy
.
Also, there is a metadata.jsonl
in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, the path of pitch features, the path of energy features, speaker, and the id of each utterance.
For more details, You can refer to FastSpeech2 with CSMSC
Pretrained FastSpeech2 model for end-to-end rhythm version:
This FastSpeech2 checkpoint contains files listed below.
fastspeech2_rhy_csmsc_ckpt_1.3.0
├── default.yaml # default config used to train fastspeech2
├── phone_id_map.txt # phone vocabulary file when training fastspeech2
├── snapshot_iter_153000.pdz # model parameters and optimizer states
├── durations.txt # the intermediate output of preprocess.sh
├── energy_stats.npy
├── pitch_stats.npy
└── speech_stats.npy # statistics used to normalize spectrogram when training fastspeech2