-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathrun_select.py
55 lines (41 loc) · 1.44 KB
/
run_select.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import numpy as np
import paddle
from args import parse_args
from selector import model, model_manager
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
paddle.seed(args.seed)
def run(args):
set_seed(args)
# Prepare device and model
paddle.set_device(args.device)
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
rank = paddle.distributed.get_rank()
selector = model.Selector(args)
if paddle.distributed.get_world_size() > 1:
selector = paddle.DataParallel(selector)
# Prepare model manager
manager = model_manager.ModelManager(args, selector)
if args.do_train:
manager.train(rank)
if args.do_predict and rank == 0:
manager.test()
if __name__ == "__main__":
args = parse_args()
run(args)