forked from regression1607/HacktoberFest2022
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKruskal.java
233 lines (209 loc) · 4.74 KB
/
Kruskal.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*
Find Minimum Cost Spanning Tree of a given connected undirected graph using Kruskal's
algorithm. Use Union-Find algorithms in your program.
*/
import java.util.Scanner;
public class Kruskal {
public static int find(int v,int s[])
{
while(s[v]!=v)
v=s[v];
return v;
}
public static void union1(int i,int j,int s[])
{
s[i]=j;
}
public static void kruskal(int n,int c[][])
{
int count,i,min,j,u=0,v=0,k,sum;
int s[]= new int[10];
int t[][]=new int[10][2];
for(i=0;i<n;i++)
s[i]=i;
count=0;
sum=0;
k=0;
while(count<n-1)
{
min=999;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(c[i][j]!=0 && c[i][j]<min)
{
min=c[i][j];
u=i;
v=j;
}
}
}
if(min==999) break;
i=find(u,s);
j=find(v,s);
if(i!=j)
{
t[k][0]=u;
t[k][1]=v;
k++;
count++;
sum+=min;
union1(i,j,s);
}
c[u][v]=c[v][u]=999;
}
if(count==n-1)
{
System.out.println("cost of spanning tree=" +sum+ "\n");
System.out.println("spanning tree is\n");
for(k=0;k<n-1;k++)
{
System.out.println("\n"+t[k][0]+","+t[k][1]);
}
}
else {
System.out.println("spanning treee doesn't exist");
}
}
public static void main(String args[])
{
int n,i,j;
int c[][]=new int[10][10];
Scanner in=new Scanner(System.in);
System.out.println("Enter no of nodes\n");
n=in.nextInt();
System.out.println("Enter the cost adjacency matrix\n");
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
c[i][j]=in.nextInt();
}
}
kruskal(n,c);
}
}
/*
Output:
Enter no of nodes
6
Enter the cost adjacency matrix
999 3 999 999 6 5
3 999 1 999 999 4
999 1 999 6 999 4
999 999 6 999 8 5
6 999 999 8 999 2
5 4 4 5 2 999
cost of spanning tree=15
spanning tree is
1,2
4,5
0,1
1,5
3,5
*//*
Find Minimum Cost Spanning Tree of a given connected undirected graph using Kruskal's
algorithm. Use Union-Find algorithms in your program.
*/
import java.util.Scanner;
public class Kruskal {
public static int find(int v,int s[])
{
while(s[v]!=v)
v=s[v];
return v;
}
public static void union1(int i,int j,int s[])
{
s[i]=j;
}
public static void kruskal(int n,int c[][])
{
int count,i,min,j,u=0,v=0,k,sum;
int s[]= new int[10];
int t[][]=new int[10][2];
for(i=0;i<n;i++)
s[i]=i;
count=0;
sum=0;
k=0;
while(count<n-1)
{
min=999;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(c[i][j]!=0 && c[i][j]<min)
{
min=c[i][j];
u=i;
v=j;
}
}
}
if(min==999) break;
i=find(u,s);
j=find(v,s);
if(i!=j)
{
t[k][0]=u;
t[k][1]=v;
k++;
count++;
sum+=min;
union1(i,j,s);
}
c[u][v]=c[v][u]=999;
}
if(count==n-1)
{
System.out.println("cost of spanning tree=" +sum+ "\n");
System.out.println("spanning tree is\n");
for(k=0;k<n-1;k++)
{
System.out.println("\n"+t[k][0]+","+t[k][1]);
}
}
else {
System.out.println("spanning treee doesn't exist");
}
}
public static void main(String args[])
{
int n,i,j;
int c[][]=new int[10][10];
Scanner in=new Scanner(System.in);
System.out.println("Enter no of nodes\n");
n=in.nextInt();
System.out.println("Enter the cost adjacency matrix\n");
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
c[i][j]=in.nextInt();
}
}
kruskal(n,c);
}
}
/*
Output:
Enter no of nodes
6
Enter the cost adjacency matrix
999 3 999 999 6 5
3 999 1 999 999 4
999 1 999 6 999 4
999 999 6 999 8 5
6 999 999 8 999 2
5 4 4 5 2 999
cost of spanning tree=15
spanning tree is
1,2
4,5
0,1
1,5
3,5
*/