-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathballoon_model.py
executable file
·265 lines (216 loc) · 9.97 KB
/
balloon_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""Simulation of the hemodynamic response through the
ballon model. See Buxton (1998), Friston (2000), Zheng (2002).
The implementation presented here derives directly from the
set of differential equations and notation available in Zheng (2002)
(page 622).
"""
# OPEN ISSUES:
# *) add CCA fMRI ODEs solution as method, to compare results
# *) where are the intial values in the Zheng (2002) paper?
import numpy as N
import scipy.integrate
class ModelParameter(object):
"""One parameter of the Balloon model: its value(s) and
description.
"""
def __init__(self, name=None, default_value=0.0, interval_half_width=0.0, description=""):
self.name = name
if self.name == None: # parameter needs a name!
raise Exception
self.default_value = default_value # remember default value
self.interval_half_width = interval_half_width
self.min = self.default_value-self.interval_half_width
self.max = self.default_value+self.interval_half_width
self.description = description
self.value = self.default_value # actual value
pass
def __call__(self):
"""Allow the syntax self.parameter() to get self.parameter.value .
"""
return self.value
def random(self):
"""Generate one (or more) random values for the parameter
according to the uniform distribution defined by [min,max).
"""
self.value = N.random.uniform(self.min,self.max)
return
def __str__(self):
"""Informative printout of the parameter contents.
"""
return "%s, value=%s, default_value=%s, range=[%s,%s), description='%s: %s'" % (self.name,str(self.value),str(self.default_value),str(self.min),str(self.max),self.name,self.description)
pass
class BalloonModel(object):
"""The Balloon model deascribed by Buxton (1998)
and then extended by Friston (2000) and Zheng (2002).
See Zheng at al., A Model of the Hemodynamic Response and Oxygen
Delivery to Brain, Neuroimage 2002.
"""
def __init__(self):
self.default_values()
pass
def default_values(self):
"""Set default values for parameters of balloon model.
Values are taken from Zheng (2002) and CCA fMRI software.
"""
self.CaB = ModelParameter("C^a_B",1.0,0.0,"Blood oxygen concentration in the arterial end of capillary")
self.epsilon = ModelParameter("epsilon",0.5,0.15,"neuronal efficacy")
self.tau_s = ModelParameter("tau_s",1.2,0.3,"signal decay")
self.tau_f = ModelParameter("tau_f",2.4,0.5,"autoregulation")
self.E_0 = ModelParameter("E_0",0.4,0.1,"baseline value of oxygen extraction fraction")
self.tau_0 = ModelParameter("tau_0",1.0,0.5,"venous time constant")
self.T = ModelParameter("T",1.0,0.5,"mean capillary transit time")
self.r = ModelParameter("C_P/C_B",0.01,0.005,"ratio between oxygen concentration in plasma (C_P) and total oxygen concentration in blood (C_B)")
self.vol_ratio = ModelParameter("Vtis/Vcap",75.0,25.0,"ratio between the volume of blood in tissue (Vtis) and the volume of blood in capillary (Vcap)")
self.K = ModelParameter("K",0.1,0.05,"constant of metabolic demand")
self.alpha = ModelParameter("alpha",0.3,0.1,"Grubb's exponent (stiffness)")
self.g_0 = ModelParameter("g_0 = C_T/C^a_P",0.1,0.05,"baseline value of tissue oxygen concentration")
self.J = ModelParameter("J",5.0,0.0,"scaling of the tissue oxygen concentration")
self.V_0 = ModelParameter("V_0",0.02,0.0,"TODO")
pass
def random(self):
"""Clever trick to run .random() on all ModelParameter
instances inside this object
"""
for i in list(self.__dict__):
if isinstance(self.__dict__[i], ModelParameter):
self.__dict__[i].random()
pass
pass
return
def __str__(self):
"""Printout of all parameters of the balloon model.
"""
s = "Balloon Model\nParameters values\n"
for i in list(self.__dict__):
if isinstance(self.__dict__[i], ModelParameter):
s += "\t- "+str(self.__dict__[i])+"\n"
pass
pass
return s
def ODE_ballon(self,Y,protocol_time):
"""The set of differential equations of the balloon model.
"""
# get the current value of the stimulation protocol:
if self.sp:
current_event = self.stimulation_protocol.stimulus(protocol_time)
else:
try:
current_event = self.event_time_course[N.floor(protocol_time/self.TR),1]
except IndexError:
current_event = 0.0
pass
s,f_in,E,CB,g,v,q = Y
f_out = v**(1.0/self.alpha())
# ODEs:
ds_dt = self.epsilon() * current_event - s / self.tau_s() - (f_in - 1.0) / self.tau_f()
df_in_dt = s
dE_dt = f_in / self.phi * (-E + (1.0 - g) * (1.0 - (1.0 - (self.E_0() / (1.0 - self.g_0()))) ** (1.0 / f_in)))
dCB_dt = f_in / self.phi * (-CB - self.CaB()*E / N.log(1.0 - E / (1.0 - g)) + self.CaB()*g)
dg_dt = (self.E_0() / (self.J() * self.vol_ratio() * self.r() * self.T())) * (((CB - g*self.CaB()) / (self.CB_0 - self.g_0()*self.CaB()) - 1.0) - self.K() * current_event)
dv_dt = (1.0 / self.tau_0()) * (f_in - f_out)
dq_dt = (1.0 / self.tau_0()) * (f_in * (E / self.E_0()) - f_out * (q / v))
return N.array([ds_dt,df_in_dt,dE_dt,dCB_dt,dg_dt,dv_dt,dq_dt])
def solve_ode(self, event_time_course=None, stimulation_protocol=None, timesteps=None):
"""Solve the balloon model ODEs.
"""
self.sp = False
if stimulation_protocol is not None:
self.sp = True
self.stimulation_protocol = stimulation_protocol
self.timesteps = timesteps
elif event_time_course is not None:
self.event_time_course = event_time_course
self.TR = self.event_time_course[1,0]-self.event_time_course[0,0]
# print self.TR
pass
else:
raise Exception
# define some more constants (See Zheng (2002)):
self.CB_0 = -self.E_0() / N.log(1.0-self.E_0()/(1.0-self.g_0())) + self.g_0() # baseline value of spatial mean total blood oxygen concentration
self.phi = 0.15 * self.T()
# ODEs initial values, taken from Zheng (2002) and CCA fMRI:
s = 0.0
f_in = 1.0
E = self.E_0()
CB = self.CB_0
g = self.g_0()
v = 1.0
q = 1.0
Y_0 = N.array([s,f_in,E,CB,g,v,q])
if self.sp:
# self.critical_timesteps = N.sort(N.hstack([stimulation_protocol.onset,stimulation_protocol.onset+stimulation_protocol.duration])) # USING ONSETS AND OFFSETS RAISES AN ERROR IN ODEINT!!!
self.critical_timesteps = stimulation_protocol.onset # WE JUST FEED ONSENTS
# hmax = stimulation_protocol.duration.min()/2.0 # NOT USED ANYMORE
Y, self.infodict = scipy.integrate.odeint(self.ODE_ballon, Y_0, self.timesteps, ixpr=True, full_output=True, tcrit=self.critical_timesteps, printmessg=True)
else:
Y = scipy.integrate.odeint(self.ODE_ballon, Y_0, self.event_time_course[:,0], hmax=0.1, ixpr=True)
pass
# REMEMBER TO SWITCH ARGS IN ODE_balloon IF YOU USE THIS:
# t0 = self.event_time_course[0,0]
# result = scipy.integrate.ode(derivative,jac=None).set_integrator('vode').set_initial_value(Y0,t0)
# Y = N.zeros((self.event_time_course.shape[0],7))
# Y[0,:] = Y0
# for t in event_time_course[1:,0]:
# if result.successful():
# result.integrate(t)
# # print result.t
# # print result.y
# Y[result.t,:] = result.y
# else:
# print "ERROR: Cannot find solution!"
# break
# pass
# Extract results:
s = Y[:,0]
f_in = Y[:,1]
E = Y[:,2]
CB = Y[:,3]
g = Y[:,4]
v = Y[:,5]
q = Y[:,6]
# Compute bold (omit rescaling to V_0):
bold = (7.0 * self.E_0() * (1.0 - q) + 2.0 * (1.0 - q / v) + (2.0 * self.E_0() - 0.2) * (1.0 - v)) # *self.V_0()
return bold
if __name__ == "__main__":
N.random.seed(1)
import pylab as P
import stimulation_protocol
bm = BalloonModel()
# bm.random()
# Set a protocol
TR = 0.5
experiment_duration = 101.0
event_time_course = N.zeros((experiment_duration/TR, 2))
event_time_course[10/TR:11/TR,1] = 1.0
event_time_course[12/TR:13/TR,1] = 1.0
event_time_course[17/TR:18/TR,1] = 1.0
event_time_course[19/TR:20/TR,1] = 1.0
event_time_course[:,0] = N.arange(0,experiment_duration, TR)
bold = bm.solve_ode(event_time_course)
# print bold2
P.plot(bold)
# bm.E_0.value = 0.3
# bm.tau_f.value = 2.0
# bm.epsilon.value = 0.65
# for i in range(10):
# bm.random()
# bold = bm.solve_ode(event_time_course)
# P.plot(bold)
# pass
sp = stimulation_protocol.StimulationProtocol()
sp.random(how_many=20,total_duration=200.0, duration=3.0, random_duration=True)
event_time_course = sp.generate_event_time_course(total_duration=200.0, TR=1.0)
event_time_course2 = sp.generate_event_time_course2(total_duration=200.0, TR=1.0)
ts = N.arange(0,200.0,1.0)
bold = bm.solve_ode(event_time_course)
bold2 = bm.solve_ode(event_time_course2)
bold3 = bm.solve_ode(stimulation_protocol=sp, timesteps=ts)
P.figure()
P.plot(event_time_course[:,0],event_time_course[:,1], label="stimuli")
P.plot(event_time_course[:,0],bold,label="BOLD (stimuli TR)")
P.plot(event_time_course[:,0],bold2,label="BOLD (stimuli TR 2)")
P.plot(ts,bold3,label="BOLD (stimuli exact)")
P.ylim(ymin=-0.5,ymax=max(1.5,bold.max()*1.3))
P.legend()
P.title("BOLD (balloon model) with different stimuli generators")
P.xlabel("time (sec.)")