-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnoise.py
executable file
·271 lines (216 loc) · 8.18 KB
/
noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""Variuos noise models."""
import numpy as N
class Noise(object):
"""Base class of noise generators.
"""
def __init__(self, size):
"""Contructor
size = amount of noise to produce.
"""
self.size = size
return
pass
class GaussianWhiteNoise(Noise):
"""Gaussian White Noise.
"""
def __init__(self, sigma=1.0, size=100):
Noise.__init__(self,size)
self.sigma = sigma
self.generate()
return
def generate(self):
self.data = N.random.randn(self.size)*self.sigma
return self.data
pass
class GaussianNoise(Noise):
"""Gaussian (non white) Noise generator.
"""
def __init__(self,covariance, size=None):
"""Size can be any arbitrary size, including a tuple for the case of
multimensional noise generation.
The noise generated has the same dimensions as size (in the general
case) or it is just one random vector of size covariance.shape[0]
(when size is not specified).
>>> N.random.seed(1)
>>> cov=N.eye(3)
>>> gn=GaussianNoise(cov)
>>> gn.data
array([ 1.62434536, -0.61175641, -0.52817175])
"""
if size==None:
size = covariance.shape[0]
pass
Noise.__init__(self,size)
self.covariance = covariance
self.generate()
return
def generate(self):
size = []
if not N.isscalar(self.size):
size = self.size[1:]
pass
self.data = N.random.multivariate_normal( \
N.zeros(self.covariance.shape[0]),
self.covariance, size)
# roll axes to match self.size.shape (in the general case), as
# it is expected by this application (but not from
# N.random.multivariate_normal, see its docstring for
# details about why this operation is necessary):
self.data = N.rollaxis(self.data,-1)
return self.data
pass
class GaussianAR1Noise(GaussianNoise):
"""Gaussian Auto Regressive (p=1) temporal Noise.
"""
def __init__(self,rho=0.9,sigma1=0.5,size=100):
self.size = size
if not N.isscalar(size):
self.size = N.array(size)
size = size[0]
pass
sigma_squared = sigma1**2/(1.0-rho**2)
self.covariance = rho**N.abs(N.subtract.outer(N.arange(size),N.arange(size)))*sigma_squared
GaussianNoise.__init__(self, covariance=self.covariance, size=self.size)
pass
pass
class SpatialGaussianAR1Noise(object):
"""Gaussian Auto Regressive (p=1) Spatial (2D) noise.
"""
def __init__(self, noise3D, rho_spatial=0.5, sigma_spatial=0.1):
self.noise3D = noise3D
self.rho_spatial = rho_spatial
self.sigma_spatial = sigma_spatial
self.generate()
return
def generate(self):
self.data = N.zeros(self.noise3D.shape)
for i in [-1,0,1]:
for j in [-1,0,1]:
tmp = N.roll(self.noise3D,i,1)
tmp = N.roll(tmp,j,2)
self.data += tmp
pass
pass
self.data /= 9.0
# print self.data.shape
self.data = self.rho_spatial*self.data + GaussianNoise(covariance=N.eye(self.data.shape[0])*self.sigma_spatial**2,size=self.data.shape).data
return self.data
pass
class SpatialGaussianAR1Noise2(object):
"""Gaussian Auto Regressive (p=1) Spatial (2D) noise.
Iterative agorithm that computes voxels in a given sequence
(and using updated values
"""
def __init__(self, noise3D, rho_spatial=0.5, sigma_spatial=0.1):
self.noise3D = noise3D # .copy()?
self.rho_spatial = rho_spatial
self.sigma_spatial = sigma_spatial
self.generate()
return
def generate(self):
# 1. generate a (random) path to navigate the 2D matrix,
# which is a random permutation of the indexes of the 2D matrix.
path = zip(*N.where(self.noise3D[0,:,:]!=N.nan)) # trick to generate an ordered list of (X,Y) pairs (path). Assumes there is no NaN in noise3D
N.random.shuffle(path) # shuffle path (inplace)
# 2. for each voxel in the path compute the AR value according to the usual formula:
# X_ij = rho * mean(X_neighborhood(i,j)) + N(0,sigma)
# remember to update the dataset with the new compute value!!
# Note: instead of mean it can be a weighted mean.
radius = 1 # radius
print self.noise3D.shape
for i,j in path:
print i,j
for k in range(i-radius,i+radius+1):
for l in range(j-radius,j+radius+1):
if i!=k and j!=l:
self.noise3D[:,i,j] += self.noise3D[:,k % self.noise3D.shape[1],l % self.noise3D.shape[2]]
pass
pass
pass
self.noise3D[:,i,j] = self.rho_spatial*self.noise3D[:,i,j]/float((radius*2+1)**2) + N.random.randn(self.noise3D.shape[0])*self.sigma_spatial
pass
self.data = self.noise3D
return self.noise3D
pass
def GWN(size,sigma=1.0):
"""Gaussian White Noise.
sigma = std of the Gaussian
size = size of the result
"""
return N.random.randn(size)*sigma
def GN(covariance):
"""Colored Gaussian Noise.
covariance = the covariance structure of the noise
"""
return N.random.multivariate_normal(N.zeros(covariance.shape[0]),covariance)
def GN_AR1(rho=0.9,sigma1=0.5,size=100):
"""Autoregressive AR(1) Gaussian noise.
rho = temporal correlation (-1 < rho < 1)
sigma1 = amplitude of iid Gaussian noise
size = number of timesteps to generate
"""
sigma_squared = sigma1**2/(1.0-rho**2)
cova = rho**N.abs(N.subtract.outer(N.arange(size),N.arange(size)))*sigma_squared
return GN(cova)
def GN_AR1_recurrent(rho=0.9,sigma1=0.5,size=100):
"""Autoregressive AR(1) Gaussian noise. Recurrent algoritm.
rho = temporal correlation (-1 < rho < 1)
sigma1 = amplitude of iid Gaussian noise
size = number of timesteps to generate
"""
noise = N.zeros(size)
for i in range(size):
noise[i] = rho*noise[i-1] + N.random.randn()*sigma1
pass
return noise
def GN_ARp_recurrent(rho=N.array([0.9,0.5,-0.1,0.001]),sigma1=0.5,size=100):
"""Autoregressive AR(p) Gaussian noise. Recurrent algoritm.
rho = temporal correlation vector (-1 < rho[i] < 1)
sigma1 = amplitude of iid Gaussian noise
size = number of timesteps to generate
"""
noise = N.zeros(size)
p = rho.size
tmp = -N.arange(p)
for i in range(size):
s = range(i-1,i-p-1,-1)
noise[i] = (rho*noise[s]).sum() + N.random.randn()*sigma1
pass
return noise
def purdon1998(rho=0.9,sigma1=0.5,sigma2=0.3,size=100):
"""Gaussian AR(1) noise plus a second source of white noise.
This model wan introduced by Purdon et al. (1998) to model
fMRI noise and take into account white noise from scanner.
rho = temporal correlation (-1 < rho < 1)
sigma1 = amplitude of iid Gaussian noise
sigma2 = amplitude of iid Gaussian scanner noise
size = number of timesteps to generate
"""
return GN_AR1_recurrent(rho=rho,sigma1=sigma1,size=size)+N.random.randn(size)*sigma2
if __name__=="__main__":
import pylab
dim = 500
noise_GWN = GWN(dim,1.0)
pylab.plot(noise_GWN+0,label="GWN")
cova = N.eye(dim)
noise_GN = GN(cova)
pylab.plot(noise_GN+3,label="GN (white)")
rho = 0.9
sigma1 = 0.4
noise_GN_AR1 = GN_AR1(rho=rho, sigma1=sigma1, size=dim)
pylab.plot(noise_GN_AR1+6,label="GN AR(1)")
rho = 0.9
sigma1 = 0.4
noise_GN_AR1_r = GN_AR1_recurrent(rho=rho, sigma1=sigma1, size=dim)
pylab.plot(noise_GN_AR1_r+9,label="GN AR(1) rec.")
rho = N.array([0.9,0.1,-0.05,0.001])
sigma1 = 0.4
noise_GN_ARp_r = GN_ARp_recurrent(rho=rho, sigma1=sigma1, size=dim)
pylab.plot(noise_GN_ARp_r+12,label="GN AR(p) rec.")
rho = 0.9
sigma1 = 0.4
sigma2 = 0.3
noise_purdon1998 = purdon1998(rho=rho, sigma1=sigma1, sigma2=0.3, size=dim)
pylab.plot(noise_purdon1998+15,label="Purdon (1998)")
pylab.legend()
pylab.title("Examples of noise")