-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproj3_tr.py
112 lines (93 loc) · 2.83 KB
/
proj3_tr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
import matplotlib.pyplot as plt
def def_response():
# Analitycznie
y1 = np.zeros(N)
for n in range(N):
if n == 0:
y1[n] = 0
else:
y1[n] = (5/13)*((1/2)**(n-1)) + (-272/65)*((-4/5)**(n-1)) + 6*delta[n]
# Symulacja
y2 = np.zeros(N)
for n in range(N):
if n == 0:
y2[n] = a*(d)**n
else:
y2[n] = a*(d)**n + b*(d)**(n-1) - c*y2[n-1]
plt.figure(1)
plt.title("Odpowiedź na pobudzenie u[n]=(1/2)**n")
plt.scatter(t, y1, label="Analitycznie", marker='o', s=10)
plt.scatter(t, y2, label="Symulacyjnie", marker='o', s=10)
plt.grid()
plt.legend()
plt.xlabel('t')
plt.ylabel('y')
plt.show()
def imp_response():
# Analitycznie
y3 = np.zeros(N)
for n in range(N):
if n == 0:
y3[n] = 0
else:
y3[n] = (-34/5)*((-4/5)**(n-1)) + 6*delta[n]
# Symulacyjnie
y4 = np.zeros(N)
for n in range(N):
if n == 0:
y4[n] = a*delta[n]
else:
y4[n] = a*delta[n] + b*delta[n-1] - c*y4[n-1]
plt.figure(2)
plt.title("Odpowiedź impulsowa")
plt.scatter(t, y3, label="OI Analitycznie", marker='o', s=10)
plt.scatter(t, y4, label="OI Symulacyjnie", marker='o', s=10)
plt.grid()
plt.legend()
plt.xlabel('t')
plt.ylabel('y')
plt.show()
def step_response():
# Analitycznie
for i in range(len(y_minus_1)):
plt.figure(f"For y[-1] = {y_minus_1[i]}")
plt.title(f"Odpowiedź skokowa dla y[-1]={y_minus_1[i]}")
y5 = np.zeros(N)
for n in range(N):
if n == 0:
y5[n] = y_minus_1[i]
else:
y5[n] = 20/(9*(y_minus_1[i] + 1)) + ( 16/9 - (24/5)*( y_minus_1[i] + 1 ) )*(( (-4/5) * (y_minus_1[i] + 1) )**(n-1)) + 6*delta[n]
# y5[n] = (100/45) + (-136/45)*((-4/5)**(n-1)) + 6*delta[n]
plt.scatter(t, y5, label=f"OS Analitycznie{y_minus_1[i]}", marker='o', s=10)
# Symulacyjnie
y6 = np.zeros(N)
u = np.ones(N)
for n in range(N):
if n == 0:
y6[n] = a * u[n] + b * u[n-1] - c * y_minus_1[i]
else:
y6[n] = a * u[n] + b * u[n-1] - c * y6[n-1]
plt.scatter(t, y6, label=f"OS Symulacyjnie{y_minus_1[i]}", marker='o', s=10)
plt.grid()
plt.legend()
plt.xlabel('t')
plt.ylabel('y')
plt.show()
# Parametry
N = 100
t = np.arange(N)
delta = np.zeros(N)
delta[0] = 1
a = 6
b = -2
c = 4/5
d = 1/2
y_minus_1 = [0, 1]
# Odpowiedz na pobudzenie
# def_response()
# Odpowiedz impulsowa
# imp_response()
# Odpowiedz skokowa
step_response()