-
Notifications
You must be signed in to change notification settings - Fork 0
/
vectmath.H
305 lines (256 loc) · 15.6 KB
/
vectmath.H
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/*************************************************************************/
/* */
/* Copyright (c) 1994 Stanford University */
/* */
/* All rights reserved. */
/* */
/* Permission is given to use, copy, and modify this software for any */
/* non-commercial purpose as long as this copyright notice is not */
/* removed. All other uses, including redistribution in whole or in */
/* part, are forbidden without prior written permission. */
/* */
/* This software is provided with absolutely no warranty and no */
/* support. */
/* */
/*************************************************************************/
/*
* VECTMATH.H: include file for vector/matrix operations.
*/
#ifndef _VECMATH_H_
#define _VECMATH_H_
#define NDIM 3L
typedef real vector[NDIM], matrix[NDIM][NDIM];
/*
* Vector operations.
*/
#define CLRV(v) /* CLeaR Vector */ \
{ \
register long _i; \
for (_i = 0; _i < NDIM; _i++) \
(v)[_i] = 0.0; \
}
#define UNITV(v,j) /* UNIT Vector */ \
{ \
register long _i; \
for (_i = 0; _i < NDIM; _i++) \
(v)[_i] = (_i == (j) ? 1.0 : 0.0); \
}
#define SETV(v,u) /* SET Vector */ \
{ \
register long _i; \
for (_i = 0; _i < NDIM; _i++) \
(v)[_i] = (u)[_i]; \
}
#define ADDV(v,u,w) /* ADD Vector */ \
{ \
register real *_vp = (v), *_up = (u), *_wp = (w); \
*_vp++ = (*_up++) + (*_wp++); \
*_vp++ = (*_up++) + (*_wp++); \
*_vp = (*_up ) + (*_wp ); \
}
#define SUBV(v,u,w) /* SUBtract Vector */ \
{ \
register real *_vp = (v), *_up = (u), *_wp = (w); \
*_vp++ = (*_up++) - (*_wp++); \
*_vp++ = (*_up++) - (*_wp++); \
*_vp = (*_up ) - (*_wp ); \
}
#define MULVS(v,u,s) /* MULtiply Vector by Scalar */ \
{ \
register real *_vp = (v), *_up = (u); \
*_vp++ = (*_up++) * (s); \
*_vp++ = (*_up++) * (s); \
*_vp = (*_up ) * (s); \
}
#define DIVVS(v,u,s) /* DIVide Vector by Scalar */ \
{ \
register long _i; \
for (_i = 0; _i < NDIM; _i++) \
(v)[_i] = (u)[_i] / (s); \
}
#define DOTVP(s,v,u) /* DOT Vector Product */ \
{ \
register real *_vp = (v), *_up = (u); \
(s) = (*_vp++) * (*_up++); \
(s) += (*_vp++) * (*_up++); \
(s) += (*_vp ) * (*_up ); \
}
#define ABSV(s,v) /* ABSolute value of a Vector */ \
{ \
double _tmp, sqrt(); \
register long _i; \
_tmp = 0.0; \
for (_i = 0; _i < NDIM; _i++) \
_tmp += (v)[_i] * (v)[_i]; \
(s) = sqrt(_tmp); \
}
#define DISTV(s,u,v) /* DISTance between Vectors */ \
{ \
double _tmp, sqrt(); \
register long _i; \
_tmp = 0.0; \
for (_i = 0; _i < NDIM; _i++) \
_tmp += ((u)[_i]-(v)[_i]) * ((u)[_i]-(v)[_i]); \
(s) = sqrt(_tmp); \
}
#define CROSSVP(v,u,w) /* CROSS Vector Product */ \
{ \
(v)[0] = (u)[1]*(w)[2] - (u)[2]*(w)[1]; \
(v)[1] = (u)[2]*(w)[0] - (u)[0]*(w)[2]; \
(v)[2] = (u)[0]*(w)[1] - (u)[1]*(w)[0]; \
}
#define INCADDV(v,u) /* INCrementally ADD Vector */ \
{ \
register long _i; \
for (_i = 0; _i < NDIM; _i++) \
(v)[_i] += (u)[_i]; \
}
#define INCSUBV(v,u) /* INCrementally SUBtract Vector */ \
{ \
register long _i; \
for (_i = 0; _i < NDIM; _i++) \
(v)[_i] -= (u)[_i]; \
}
#define INCMULVS(v,s) /* INCrementally MULtiply Vector by Scalar */ \
{ \
register long _i; \
for (_i = 0; _i < NDIM; _i++) \
(v)[_i] *= (s); \
}
#define INCDIVVS(v,s) /* INCrementally DIVide Vector by Scalar */ \
{ \
register long _i; \
for (_i = 0; _i < NDIM; _i++) \
(v)[_i] /= (s); \
}
/*
* Matrix operations.
*/
#define CLRM(p) /* CLeaR Matrix */ \
{ \
register long _i, _j; \
for (_i = 0; _i < NDIM; _i++) \
for (_j = 0; _j < NDIM; _j++) \
(p)[_i][_j] = 0.0; \
}
#define SETMI(p) /* SET Matrix to Identity */ \
{ \
register long _i, _j; \
for (_i = 0; _i < NDIM; _i++) \
for (_j = 0; _j < NDIM; _j++) \
(p)[_i][_j] = (_i == _j ? 1.0 : 0.0); \
}
#define SETM(p,q) /* SET Matrix */ \
{ \
register long _i, _j; \
for (_i = 0; _i < NDIM; _i++) \
for (_j = 0; _j < NDIM; _j++) \
(p)[_i][_j] = (q)[_i][_j]; \
}
#define TRANM(p,q) /* TRANspose Matrix */ \
{ \
register long _i, _j; \
for (_i = 0; _i < NDIM; _i++) \
for (_j = 0; _j < NDIM; _j++) \
(p)[_i][_j] = (q)[_j][_i]; \
}
#define ADDM(p,q,r) /* ADD Matrix */ \
{ \
register long _i, _j; \
for (_i = 0; _i < NDIM; _i++) \
for (_j = 0; _j < NDIM; _j++) \
(p)[_i][_j] = (q)[_i][_j] + (r)[_i][_j]; \
}
#define SUBM(p,q,r) /* SUBtract Matrix */ \
{ \
register long _i, _j; \
for (_i = 0; _i < NDIM; _i++) \
for (_j = 0; _j < NDIM; _j++) \
(p)[_i][_j] = (q)[_i][_j] - (r)[_i][_j]; \
}
#define MULM(p,q,r) /* Multiply Matrix */ \
{ \
register long _i, _j, _k; \
for (_i = 0; _i < NDIM; _i++) \
for (_j = 0; _j < NDIM; _j++) { \
(p)[_i][_j] = 0.0; \
for (_k = 0; _k < NDIM; _k++) \
(p)[_i][_j] += (q)[_i][_k] * (r)[_k][_j]; \
} \
}
#define MULMS(p,q,s) /* MULtiply Matrix by Scalar */ \
{ \
register long _i, _j; \
for (_i = 0; _i < NDIM; _i++) \
for (_j = 0; _j < NDIM; _j++) \
(p)[_i][_j] = (q)[_i][_j] * (s); \
}
#define DIVMS(p,q,s) /* DIVide Matrix by Scalar */ \
{ \
register long _i, _j; \
for (_i = 0; _i < NDIM; _i++) \
for (_j = 0; _j < NDIM; _j++) \
(p)[_i][_j] = (q)[_i][_j] / (s); \
}
#define MULMV(v,p,u) /* MULtiply Matrix by Vector */ \
{ \
register long _i, _j; \
for (_i = 0; _i < NDIM; _i++) { \
(v)[_i] = 0.0; \
for (_j = 0; _j < NDIM; _j++) \
(v)[_i] += (p)[_i][_j] * (u)[_j]; \
} \
}
#define OUTVP(p,v,u) /* OUTer Vector Product */ \
{ \
register long _i, _j; \
for (_i = 0; _i < NDIM; _i++) \
for (_j = 0; _j < NDIM; _j++) \
(p)[_i][_j] = (v)[_i] * (u)[_j]; \
}
#define TRACEM(s,p) /* TRACE of Matrix */ \
{ \
register long _i; \
(s) = 0.0; \
for (_i = 0.0; _i < NDIM; _i++) \
(s) += (p)[_i][_i]; \
}
/*
* Misc. impure operations.
*/
#define SETVS(v,s) /* SET Vector to Scalar */ \
{ \
register long _i; \
for (_i = 0; _i < NDIM; _i++) \
(v)[_i] = (s); \
}
#define ADDVS(v,u,s) /* ADD Vector and Scalar */ \
{ \
register long _i; \
for (_i = 0; _i < NDIM; _i++) \
(v)[_i] = (u)[_i] + (s); \
}
#define SETMS(p,s) /* SET Matrix to Scalar */ \
{ \
register long _i, _j; \
for (_i = 0; _i < NDIM; _i++) \
for (_j = 0; _j < NDIM; _j++) \
(p)[_i][_j] = (s); \
}
#define PRTV(name, vec) /* PRinT Vector */ \
{ \
fprintf(stdout,"%s = [%9.4f,%9.4f,%9.4f] ",name,vec[0],vec[1],vec[2]); \
}
#define PRIV(name, vec) /* PRint Integer Vector */ \
{ \
fprintf(stdout,"%s = [%d,%d,%d] ",name,vec[0],vec[1],vec[2]); \
}
#define PROV(name, vec) /* PRint Integer Vector */ \
{ \
fprintf(stdout,"%s = [%o,%o,%o] ",name,vec[0],vec[1],vec[2]); \
}
#define PRHV(name, vec) /* PRint Integer Vector */ \
{ \
fprintf(stdout,"%s = [%x,%x,%x] ",name,vec[0],vec[1],vec[2]); \
}
#endif