-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
491 lines (424 loc) · 21.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import argparse
import logging
import json
import os
import sys
import threading
# from models.keras_vae import train_vae
# from models.keras_cvae import train_cvae
import time
from models.pytorch_cvae import train_torch_cvae, load_model_and_dataset, load_model_and_dataset_retrain, generate_samples
from utils.dataset_utils import TabularDataset, save_dataset, load_dataset
import pandas as pd
import numpy as np
from utils.plot_utils import plot
from pyspark.sql import SparkSession
os.environ['NUMEXPR_MAX_THREADS'] = '16'
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('max_colwidth', -1)
pd.set_option('display.float_format', lambda x: '%.2f' % x)
# logging.basicConfig(level=logging.INFO,#控制台打印的日志级别
# # filename='./skew_size_var/logs/aggvar086_id200_ld_200.log',
# filemode='w',
# format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s'
# )
logger = logging.getLogger(__name__)
spark = SparkSession.builder.appName("SparkSQLSampling").master("yarn").config("spark.executor.memory", "20g").config(
"spark.driver.memory", "30g").config("spark.executor.instances", 10).config("spark.executor.cores", 10).enableHiveSupport().getOrCreate()
def print_param(param):
logger.info("model:{}".format(param["model_type"]))
logger.info("batch size:{}".format(param["batch_size"]))
logger.info("categorical columns:{}".format(param["categorical_columns"]))
logger.info("numeric columns:{}".format(param["numeric_columns"]))
if 'label_columns' in param:
logger.info("label columns:{}".format(param["label_columns"]))
logger.info("categorical encoding:{}".format(param["categorical_encoding"]))
logger.info("numeric encoding:{}".format(param["numeric_encoding"]))
def train_load_models(train_config_list):
model_dataset_list = []
for param in train_config_list:
model_type = param["model_type"]
if model_type == "torch_cvae":
if param['train_flag'] == 'train':
model_dataset = train_torch_cvae(param)
elif param['train_flag'] == 'load':
model_dataset = load_model_and_dataset(param)
else:
model_dataset = load_model_and_dataset_retrain(param)
model_dataset_list.append(model_dataset)
return model_dataset_list
def train_models(train_config_list):
model_dataset_list = []
for param in train_config_list:
model_type = param["model_type"]
if model_type == "torch_cvae":
model_dataset = train_torch_cvae(param)
model_dataset_list.append(model_dataset)
return model_dataset_list
def load_models(train_config_list):
model_dataset_list = []
for param in train_config_list:
model_type = param["model_type"]
if model_type == "torch_cvae":
model_dataset = load_model_and_dataset(param)
model_dataset_list.append(model_dataset)
return model_dataset_list
def generate_sample_list(model_dataset_list, query_config, train_config_list):
sample_list = []
for i in range(len(train_config_list)):
model, dataset = model_dataset_list[i]
# sample = generate_samples(model, dataset, query_config, train_config_list[i])
if train_config_list[i]['operation'] == 'aqp':
sample = generate_samples(model, dataset, query_config, train_config_list[i])
else:
full_dataset = load_dataset(train_config_list[i])
sample = full_dataset.origin_df
sample['{}_rate'.format(dataset.name)] = 1.0
# sample.to_csv('./samples/' + train_config_list[i]['name'] + '.csv', index=False)
# if train_config_list[i]['name'].endswith('store'):
# print(sample)
sample_list.append(sample)
return sample_list
def compare_aggregation(sample_agg, query_config, index=False):
ground_truth_path = query_config['ground_truth']
if index:
ground_truth = pd.read_csv(ground_truth_path, index_col=query_config['groupby_cols'])
else:
ground_truth = pd.read_csv(ground_truth_path)
diff = ((ground_truth - sample_agg).abs() / ground_truth.abs())
logger.info("aqp result:\n{}".format(sample_agg[:50]))
logger.info("ground truth:\n{}".format(ground_truth[:50]))
diff.fillna(1, inplace=True)
return diff
def compare_aggregation_norm(sample_agg, query_config, index=False):
ground_truth_path = query_config['ground_truth']
if index:
ground_truth = pd.read_csv(ground_truth_path, index_col=query_config['groupby_cols'])
else:
ground_truth = pd.read_csv(ground_truth_path)
diff = 1 - np.exp(-((ground_truth - sample_agg).abs() / ground_truth.abs()))
diff.fillna(1, inplace=True)
return diff
def uniform_aqp(query_config, train_config_list):
start_time = time.perf_counter()
sample_list = uniform_sample_list(train_config_list)
# sample_agg = ground_truth_aggregation(sample_list, query_config)
sample_agg = sample_aggregation(sample_list, query_config, train_config_list)
diff = compare_aggregation(sample_agg, query_config)
logger.info("uniform aqp diff:\n{}".format(diff[:50]))
logger.info("total error:{}".format(diff.values.sum() / diff.size))
end_time = time.perf_counter()
logger.info("sample time:{}".format(end_time - start_time))
def stratified_aqp(query_config, train_config_list):
start_time = time.perf_counter()
sample_list = uniform_sample_list(train_config_list)
# sample_agg = ground_truth_aggregation(sample_list, query_config)
sample_agg = sample_aggregation(sample_list, query_config, train_config_list)
diff = compare_aggregation(sample_agg, query_config)
logger.info("stratified aqp diff:\n{}".format(diff[:50]))
logger.info("total error:{}".format(diff.values.sum() / diff.size))
end_time = time.perf_counter()
logger.info("sample time:{}".format(end_time - start_time))
def uniform_sample_list(train_config_list):
sample_list = []
for param in train_config_list:
file_path = param["data"]
delimiter = param["delimiter"]
data = pd.read_csv(file_path, delimiter=delimiter)
rate = param["sample_rate"]
sample = data.sample(frac=rate)
rate_col = '{}_rate'.format(param["name"])
sample[rate_col] = rate
sample_list.append(sample)
return sample_list
def stratified_allocation(df, groupby_col, sample_rate, type):
groupby_cnt = df.groupby(groupby_col).size()
if type == 'house':
allocation = (groupby_cnt * sample_rate).astype(int)
else:
k = int(groupby_cnt.sum() * sample_rate / groupby_col.size)
allocation = groupby_cnt.apply(lambda x: x if x < k else k)
allocation = allocation.to_dict()
return allocation
def stratified_sample_list(train_config_list):
sample_list = []
for param in train_config_list:
file_path = param["data"]
delimiter = param["delimiter"]
data = pd.read_csv(file_path, delimiter=delimiter)
rate = param["sample_rate"]
sample = data.sample(frac=rate)
rate_col = '{}_rate'.format(param["name"])
sample[rate_col] = rate
sample_list.append(sample)
return sample_list
def ground_truth_aggregation(query_config, train_config_list):
start_time = time.perf_counter()
sum_cols = query_config['sum_cols']
avg_cols = query_config['avg_cols']
join_cols = query_config['join_cols']
groupby_cols = query_config['groupby_cols']
ground_truth_path = query_config['ground_truth']
aggregations = {}
for col in avg_cols:
# agg_name = col + "_mean"
agg_name = "avg({})".format(col)
aggregations[agg_name] = (col, 'mean')
for col in sum_cols:
# agg_name = col + "_sum"
agg_name = "sum({})".format(col)
aggregations[agg_name] = (col, 'sum')
data_list = []
for param in train_config_list:
file_path = param["data"]
delimiter = param["delimiter"]
data = pd.read_csv(file_path, delimiter=delimiter)
data_list.append(data)
if len(data_list) > 1:
join_result = pd.merge(data_list[0], data_list[1], left_on=join_cols[0], right_on=join_cols[1], how='inner')
agg_result = join_result.groupby(by=groupby_cols).agg(**aggregations)
else:
samples = data_list[0]
agg_result = samples.groupby(by=groupby_cols).agg(**aggregations)
agg_result.to_csv(ground_truth_path)
logger.info("ground truth result:\n{}".format(agg_result[:50]))
end_time = time.perf_counter()
logger.info("save ground truth to path:{}".format(ground_truth_path))
logger.info("ground truth query time elapsed:{}".format(end_time - start_time))
return agg_result
def sample_aggregation(sample_list, query_config, train_config_list, createDataFrame_time):
sum_cols = query_config['sum_cols']
avg_cols = query_config['avg_cols']
join_cols = query_config['join_cols']
groupby_cols = query_config['groupby_cols']
rate_cols = [config['name'] + "_rate" for config in train_config_list]
outlier = True if 'outliers' in train_config_list[0] and train_config_list[0]['outliers'] == 'true' else False
aggregations = {}
condition = 1
if 'condition' in query_config and len(query_config['condition']):
logger.info("filtering with condition {}".format(query_config['condition'][0]))
condition = query_config['condition'][1]
if len(sample_list) > 1:
start_time = time.perf_counter()
sample_list0 = spark.createDataFrame(sample_list[0], list(sample_list[0]))
sample_list1 = spark.createDataFrame(sample_list[1], list(sample_list[1]))
end_time = time.perf_counter()
createDataFrame_time[0] = end_time - start_time
logger.info("createDataFrame_time:{}".format(createDataFrame_time[0]))
start_time = time.perf_counter()
if query_config['name'] == 'census2_self_join':
join_result = sample_list0.join(sample_list1, sample_list0.a_education_num==sample_list1.b_education_num, how="inner")
elif query_config['name'] == 'census_self_join':
join_result = sample_list0.join(sample_list1, sample_list0.a_education_num==sample_list1.b_education_num, how="inner")
elif query_config['name'] == 'flights_self_join':
join_result = sample_list0.join(sample_list1, sample_list0.a_unique_carrier==sample_list1.b_unique_carrier, how="inner")
elif query_config['name'] == 'customer_join_nation':
join_result = sample_list0.join(sample_list1, sample_list0.c_nationkey==sample_list1.n_nationkey, how="inner")
elif query_config['name'] == 'customer_join_supplier':
join_result = sample_list0.join(sample_list1, sample_list0.c_nationkey==sample_list1.s_nationkey, how="inner")
elif query_config['name'] == 'sales_join_store':
join_result = sample_list0.join(sample_list1, sample_list0.ss_store_sk==sample_list1.s_store_sk, how="inner")
elif query_config['name'] == 'ssales_join_wsales':
join_result = sample_list0.join(sample_list1, sample_list0.ss_promo_sk==sample_list1.ws_promo_sk, how="inner")
else:
join_result = sample_list0.join(sample_list1, sample_list0.join_cols[0]==sample_list1.join_cols[1], how="inner")
# join_result = pd.merge(sample_list[0], sample_list[1], left_on=join_cols[0], right_on=join_cols[1], how='inner')
if len(join_cols) > 2:
join_nums = len(join_cols)
sample_index = 2
join_index = 2
while join_nums != 2:
join_result = pd.merge(join_result, sample_list[sample_index], left_on=join_cols[join_index], right_on=join_cols[join_index+1], how='inner')
sample_index += 1
join_index += 2
join_nums -= 2
if len(groupby_cols) > 0: # with group by clause
if not outlier:
for col in avg_cols:
aggregations[col] = 'mean'
for col in sum_cols:
aggregations['scale_' + col] = 'sum'
for col in rate_cols:
aggregations[col] = 'mean'
for train_config in train_config_list:
for numeric_column in train_config['numeric_columns']:
rate = 1
for col in join_result.columns:
if col.endswith('_rate'):
rate *= join_result[col]
join_result = join_result.withColumn('scale_' + numeric_column, join_result[numeric_column] / rate)
agg_result = join_result.groupby(groupby_cols).agg(aggregations)
for col in agg_result.columns:
if col.endswith('_rate)'):
agg_result = agg_result.drop(col)
elif col.startswith('sum(scale_'):
agg_result = agg_result.withColumnRenamed(col, 'sum(' + col[10:])
else:
for col in avg_cols:
agg_name = "avg({})".format(col)
aggregations[agg_name] = (col, 'mean')
for col in sum_cols:
agg_name = "sum({})".format(col)
aggregations[agg_name] = (col, 'sum')
for col in rate_cols:
agg_name = col
aggregations[agg_name] = (col, 'mean')
cnt_col = 'cnt'
aggregations[cnt_col] = (avg_cols[0], 'size')
agg_result = join_result.groupby(by=groupby_cols + rate_cols).agg(**aggregations)
# agg_result.to_csv('./agg_result.csv')
rate_col = 'rate'
agg_result[rate_col] = 1
for col in agg_result.columns:
if col.endswith('_rate'):
agg_result[rate_col] *= agg_result[col]
del agg_result[col]
f_aggregations = {}
for col in agg_result.columns:
if col.startswith('sum') or col == 'cnt':
agg_result[col] /= agg_result[rate_col]
f_aggregations[col] = (col, 'sum')
agg_result = agg_result.groupby(by=groupby_cols).agg(**f_aggregations)
for col in avg_cols:
magg_name = "avg({})".format(col)
sagg_name = "sum({})".format(col)
agg_result[magg_name] = agg_result[sagg_name] / agg_result[cnt_col]
del agg_result[cnt_col]
else: # without group by clause
for col in avg_cols:
agg_name = "avg({})".format(col)
aggregations[agg_name] = (col, 'mean')
for col in sum_cols:
agg_name = "sum({})".format(col)
aggregations[agg_name] = (col, 'sum')
for col in rate_cols:
agg_name = col
aggregations[agg_name] = (col, 'mean')
cnt_col = 'cnt'
aggregations = {agg_name: aggregations[agg_name] for agg_name in aggregations if agg_name.startswith('sum')}
aggregations[cnt_col] = (avg_cols[0], 'size')
agg_result = join_result.groupby(by=rate_cols).agg(**aggregations)
agg_result.reset_index(inplace=True)
# print(agg_result)
rate_col = 'rate'
agg_result[rate_col] = 1
for col in agg_result.columns:
if col.endswith('_rate'):
agg_result[rate_col] *= agg_result[col]
del agg_result[col]
# print(outlier)
# print(agg_result)
for col in agg_result.columns:
if col.startswith('sum') or col == 'cnt':
agg_result[col] /= agg_result[rate_col]
del agg_result[rate_col]
agg_result = pd.DataFrame(agg_result.sum()).transpose()
# agg_result = agg_result.agg(**f_aggregations)
for col in avg_cols:
# agg_name = col + "_mean"
magg_name = "avg({})".format(col)
sagg_name = "sum({})".format(col)
agg_result[magg_name] = agg_result[sagg_name] / agg_result[cnt_col]
del agg_result[cnt_col]
else:
for col in avg_cols:
agg_name = "avg({})".format(col)
aggregations[agg_name] = (col, 'mean')
for col in sum_cols:
agg_name = "sum({})".format(col)
aggregations[agg_name] = (col, 'sum')
for col in rate_cols:
agg_name = col
aggregations[agg_name] = (col, 'mean')
samples = sample_list[0]
agg_result = samples.groupby(by=groupby_cols).agg(**aggregations)
rate_col = rate_cols[0]
for col in agg_result.columns:
if col.startswith('sum'):
# if col.endswith('_sum'):
agg_result[col] /= agg_result[rate_col]
del agg_result[rate_col]
# save samples, but bring I/O cost
# agg_result.to_csv('./samples/agg_results/'+query_config['name']+'.csv',index=False)
return agg_result
def sample_generation_and_aggregation(model_dataset_list, query_config, train_config_list, sample_agg_list, createDataFrame_time_list):
start_time = time.perf_counter()
sample_list = generate_sample_list(model_dataset_list, query_config, train_config_list)
createDataFrame_time = [0]
sample_agg = sample_aggregation(sample_list, query_config, train_config_list, createDataFrame_time)
sample_agg_list.append(sample_agg)
createDataFrame_time_list.append(createDataFrame_time[0])
end_time = time.perf_counter()
logger.info('sample and aggregation time elapsed:{}'.format(end_time - start_time))
def model_aqp(query_config, train_config_list):
model_dataset_list = train_load_models(train_config_list)
multi_sample_times = query_config['multi_sample_times']
groupby_cols = query_config['groupby_cols']
sample_agg_list = []
createDataFrame_time_list = []
threads = []
# start_time = time.perf_counter()
for i in range(multi_sample_times):
logger.info("multi_sampling No.{} epoch".format(i))
thread = threading.Thread(target=sample_generation_and_aggregation,
args=(model_dataset_list, query_config, train_config_list, sample_agg_list, createDataFrame_time_list))
threads.append(thread)
thread.start()
sample_time = 0
start_time = time.perf_counter()
for t in threads:
t.join()
end_time = time.perf_counter()
sample_time = end_time - start_time - createDataFrame_time_list[-1]
for i in range(multi_sample_times):
sample_agg_list[i] = sample_agg_list[i].toPandas()
sample_agg_list[i].set_index(query_config['groupby_cols'], inplace=True)
# if len(groupby_cols) > 0:
# sample_agg = pd.concat(sample_agg_list).groupby(groupby_cols).mean()
# else:
# sample_agg = pd.concat(sample_agg_list).mean()
start_time = time.perf_counter()
sample_agg = pd.concat(sample_agg_list).groupby(level=0).mean()
end_time = time.perf_counter()
logger.info("sample time: {}".format(sample_time + end_time - start_time))
index_flag = True
if len(query_config['groupby_cols']) == 0:
index_flag = False
diff = compare_aggregation(sample_agg, query_config, index_flag)
diff_norm = compare_aggregation_norm(sample_agg, query_config, index_flag)
logger.info("relative error:\n{}".format(diff[:50]))
logger.info("relative error normalized:\n{}".format(diff_norm[:50]))
logger.info("relative error average: {}".format(diff.values.sum() / diff.size))
logger.info("relative error normalized average: {}".format(diff_norm.values.sum() / diff_norm.size))
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO,
# filename='./new_logs/exp1.2/census/tmpp.log',
# filename=log_file,
filemode='w',
format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s'
)
start_time = time.perf_counter()
query_config_file = sys.argv[1]
with open(query_config_file) as f:
query_config = json.load(f)
logger.info("load query config {} successfully".format(query_config_file))
train_config_files = query_config['train_config_files']
train_config_list = []
for config_file in train_config_files:
with open(config_file) as f:
train_config = json.load(f)
train_config_list.append(train_config)
logger.info("load train config {} successfully".format(config_file))
op = query_config['operation']
if op == 'origin':
# ground truth
ground_truth_aggregation(query_config, train_config_list)
elif op == 'uniform':
# uniform sample
uniform_aqp(query_config, train_config_list)
else:
## model aqp
model_aqp(query_config, train_config_list)
end_time = time.perf_counter()
logger.info("total_time:{}".format(end_time - start_time))