forked from modflowpy/flopy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflopy_lake_example.py
167 lines (141 loc) · 5.8 KB
/
flopy_lake_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import sys
from pathlib import Path
from tempfile import TemporaryDirectory
import matplotlib.pyplot as plt
import numpy as np
import flopy
def run(workspace, quiet):
fext = "png"
narg = len(sys.argv)
iarg = 0
if narg > 1:
while iarg < narg - 1:
iarg += 1
basearg = sys.argv[iarg].lower()
if basearg == "--pdf":
fext = "pdf"
# We are creating a square model with a specified head equal to `h1` along all boundaries.
# The head at the cell in the center in the top layer is fixed to `h2`. First, set the name
# of the model and the parameters of the model: the number of layers `Nlay`, the number of rows
# and columns `N`, lengths of the sides of the model `L`, aquifer thickness `H`, hydraulic
# conductivity `Kh`
name = "lake_example"
h1 = 100
h2 = 90
Nlay = 10
N = 101
L = 400.0
H = 50.0
Kh = 1.0
# Create a MODFLOW model and store it (in this case in the variable `ml`, but you can call it
# whatever you want). The modelname will be the name given to all MODFLOW files (input and output).
# The exe_name should be the full path to your MODFLOW executable. The version is either 'mf2k'
# for MODFLOW2000 or 'mf2005'for MODFLOW2005.
ml = flopy.modflow.Modflow(
modelname=name, exe_name="mf2005", version="mf2005", model_ws=workspace
)
# Define the discretization of the model. All layers are given equal thickness. The `bot` array
# is build from the `Hlay` values to indicate top and bottom of each layer, and `delrow` and
# `delcol` are computed from model size `L` and number of cells `N`. Once these are all computed,
# the Discretization file is built.
bot = np.linspace(-H / Nlay, -H, Nlay)
delrow = delcol = L / (N - 1)
dis = flopy.modflow.ModflowDis(
ml,
nlay=Nlay,
nrow=N,
ncol=N,
delr=delrow,
delc=delcol,
top=0.0,
botm=bot,
laycbd=0,
)
# Next we specify the boundary conditions and starting heads with the Basic package. The `ibound`
# array will be `1` in all cells in all layers, except for along the boundary and in the cell at
# the center in the top layer where it is set to `-1` to indicate fixed heads. The starting heads
# are used to define the heads in the fixed head cells (this is a steady simulation, so none of
# the other starting values matter). So we set the starting heads to `h1` everywhere, except for
# the head at the center of the model in the top layer.
Nhalf = int((N - 1) / 2)
ibound = np.ones((Nlay, N, N), dtype=int)
ibound[:, 0, :] = -1
ibound[:, -1, :] = -1
ibound[:, :, 0] = -1
ibound[:, :, -1] = -1
ibound[0, Nhalf, Nhalf] = -1
start = h1 * np.ones((N, N))
start[Nhalf, Nhalf] = h2
# create external ibound array and starting head files
files = []
hfile = str(Path(workspace) / f"{name}_strt.ref")
np.savetxt(hfile, start)
hfiles = []
for kdx in range(Nlay):
file = str(Path(workspace) / f"{name}_ib{kdx + 1:02d}.ref")
files.append(file)
hfiles.append(hfile)
np.savetxt(file, ibound[kdx, :, :], fmt="%5d")
bas = flopy.modflow.ModflowBas(ml, ibound=files, strt=hfiles)
# The aquifer properties (really only the hydraulic conductivity) are defined with the
# LPF package.
lpf = flopy.modflow.ModflowLpf(ml, hk=Kh)
# Finally, we need to specify the solver we want to use (PCG with default values), and the
# output control (using the default values). Then we are ready to write all MODFLOW input
# files and run MODFLOW.
pcg = flopy.modflow.ModflowPcg(ml)
oc = flopy.modflow.ModflowOc(ml)
ml.write_input()
ml.run_model(silent=quiet)
# Once the model has terminated normally, we can read the heads file. First, a link to the heads
# file is created with `HeadFile`. The link can then be accessed with the `get_data` function, by
# specifying, in this case, the step number and period number for which we want to retrieve data.
# A three-dimensional array is returned of size `nlay, nrow, ncol`. Matplotlib contouring functions
# are used to make contours of the layers or a cross-section.
hds = flopy.utils.HeadFile(os.path.join(workspace, f"{name}.hds"))
h = hds.get_data(kstpkper=(0, 0))
x = y = np.linspace(0, L, N)
c = plt.contour(x, y, h[0], np.arange(90, 100.1, 0.2))
plt.clabel(c, fmt="%2.1f")
plt.axis("scaled")
outfig = os.path.join(workspace, f"lake1.{fext}")
fig = plt.gcf()
fig.savefig(outfig, dpi=300)
print("created...", outfig)
x = y = np.linspace(0, L, N)
c = plt.contour(x, y, h[-1], np.arange(90, 100.1, 0.2))
plt.clabel(c, fmt="%1.1f")
plt.axis("scaled")
outfig = os.path.join(workspace, f"lake2.{fext}")
fig = plt.gcf()
fig.savefig(outfig, dpi=300)
print("created...", outfig)
z = np.linspace(-H / Nlay / 2, -H + H / Nlay / 2, Nlay)
c = plt.contour(x, z, h[:, 50, :], np.arange(90, 100.1, 0.2))
plt.axis("scaled")
outfig = os.path.join(workspace, f"lake3.{fext}")
fig = plt.gcf()
fig.savefig(outfig, dpi=300)
print("created...", outfig)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--keep", help="output directory")
parser.add_argument(
"--quiet", action="store_false", help="don't show model output"
)
args = vars(parser.parse_args())
workspace = args.get("keep", None)
quiet = args.get("quiet", False)
if workspace is not None:
run(workspace, quiet)
else:
temp_dir = TemporaryDirectory()
workspace = temp_dir.name
run(workspace, quiet)
try:
temp_dir.cleanup()
except:
# prevent permission errors on windows
pass