-
Notifications
You must be signed in to change notification settings - Fork 29
/
plip.py
118 lines (99 loc) · 4.96 KB
/
plip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
import numpy as np
from tqdm import tqdm
from typing import List, Union, Tuple
from torch.utils.data import DataLoader
import PIL
from transformers import CLIPModel, CLIPProcessor
from datasets import Dataset, Image
class PLIP:
def __init__(self, model_name, auth_token=None):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model_name = model_name
self.model, self.preprocess, self.model_hash = self._load_model(model_name, auth_token=auth_token)
self.model = self.model.to(self.device)
def _load_model(self,
name: str,
device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
auth_token=None):
model = CLIPModel.from_pretrained(name, use_auth_token=auth_token)
preprocessing = CLIPProcessor.from_pretrained(name, use_auth_token=auth_token)
return model, preprocessing, hash
def encode_images(self, images: Union[List[str], List[PIL.Image.Image]], batch_size: int):
def transform_fn(el):
imgs = el['image'] if isinstance(el['image'][0], PIL.Image.Image) else [Image().decode_example(_) for _ in
el['image']]
return self.preprocess(images=imgs, return_tensors='pt')
dataset = Dataset.from_dict({'image': images})
dataset = dataset.cast_column('image', Image(decode=False)) if isinstance(images[0], str) else dataset
# dataset = dataset.map(map_fn,
# batched=True,
# remove_columns=['image'])
dataset.set_format('torch')
dataset.set_transform(transform_fn)
dataloader = DataLoader(dataset, batch_size=batch_size)
image_embeddings = []
pbar = tqdm(total=len(images) // batch_size, position=0)
with torch.no_grad():
for batch in dataloader:
batch = {k: v.to(self.device) for k, v in batch.items()}
image_embeddings.extend(self.model.get_image_features(**batch).detach().cpu().numpy())
pbar.update(1)
pbar.close()
return np.stack(image_embeddings)
def encode_text(self, text: List[str], batch_size: int):
dataset = Dataset.from_dict({'text': text})
dataset = dataset.map(lambda el: self.preprocess(text=el['text'], return_tensors="pt",
max_length=77, padding="max_length", truncation=True),
batched=True,
remove_columns=['text'])
dataset.set_format('torch')
dataloader = DataLoader(dataset, batch_size=batch_size)
text_embeddings = []
pbar = tqdm(total=len(text) // batch_size, position=0)
with torch.no_grad():
for batch in dataloader:
batch = {k: v.to(self.device) for k, v in batch.items()}
text_embeddings.extend(self.model.get_text_features(**batch).detach().cpu().numpy())
pbar.update(1)
pbar.close()
return np.stack(text_embeddings)
def _cosine_similarity(self, key_vectors: np.ndarray, space_vectors: np.ndarray, normalize=True):
if normalize:
key_vectors = key_vectors / np.linalg.norm(key_vectors, ord=2, axis=-1, keepdims=True)
return np.matmul(key_vectors, space_vectors.T)
def _nearest_neighbours(self, k, key_vectors, space_vectors, normalize=True, debug=False):
if type(key_vectors) == List:
key_vectors = np.array(key_vectors)
if type(space_vectors) == List:
space_vectors = np.array(space_vectors)
cosine_sim = self._cosine_similarity(key_vectors, space_vectors, normalize=normalize)
nn = cosine_sim.argsort()[:, -k:][:, ::-1]
return nn
def zero_shot_classification(self, images, text_labels: List[str], debug=False):
"""
Perform zero-shot image classification
:return:
"""
# encode text
text_vectors = self.encode_text(text_labels, batch_size=8)
# encode images
image_vectors = self.encode_images(images, batch_size=8)
# compute cosine similarity
cosine_sim = self._cosine_similarity(image_vectors, text_vectors)
if debug:
print(cosine_sim)
preds = np.argmax(cosine_sim, axis=-1)
return [text_labels[idx] for idx in preds]
def retrieval(self, queries: List[str], top_k: int = 10):
"""
Image retrieval from queries
:return:
"""
# encode text
text_vectors = self.encode_text(queries, batch_size=8)
# compute cosine similarity
# cosine_sim = self._cosine_similarity(text_vectors, self.image_vectors)
return self._nearest_neighbours(k=top_k, key_vectors=text_vectors, space_vectors=self.image_vectors)
# return np.argmax(cosine_sim, axis=-1)
# return cosine_sim.argsort()[:,-top_k:][:,::-1]