-
Notifications
You must be signed in to change notification settings - Fork 0
/
tansfo.py
114 lines (84 loc) · 3.66 KB
/
tansfo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#Transformations function for clouds
#Imports
import numpy as np
import os
import open3d as o3d
from ply import write_ply,read_ply
def noise_and_transformation(data_path,sigma,t,axis):
"""
Apply noise and a transformation to a PLY file and recreate another PLY file:
Inputs :
data_path = path of an (d x N_data) matrix where "N_data" is the number of points and "d" the dimension
sigma = std of the noise added
t = scalar translation parameter
"""
data_ply=read_ply(data_path)
data = np.vstack((data_ply['x'], data_ply['y'], data_ply['z']))
data+=np.random.normal(0,sigma,data.shape)
for ax in axis :
data[ax]+=np.ones(data.shape[1])*t[ax]
directory = os.path.dirname(data_path) # Get the directory of the input file.
path = os.path.join(directory, 'noisy_data.ply')
write_ply(path, [data.T], ['x', 'y', 'z'])
def crop_random_points(data,percentage):
"""
Remove a percentage of columns (points) from a matrix at random.
Parameters:
data = A numpy array (d x N) where "N" is the number of points and "d" the dimension.
percentage = The percentage of points to remove, as a float between 0 and 100.
Returns:
reduced_matrix = A numpy array with the requested percentage of columns removed.
"""
num_points = data.shape[1]
num_remove = int(num_points * (percentage / 100.0))
# Generate a random selection of indices to remove
remove_indices = np.random.choice(num_points, num_remove, replace=False)
# Remove the selected indices
remaining_indices = np.delete(np.arange(num_points), remove_indices)
reduced_matrix = data[:, remaining_indices]
return reduced_matrix
def decimated(data_path,factor):
"""
Decimate a cloud by a factor and create a new file for the decimated cloud
Inputs :
data_path = path of an (d x N_data) matrix where "N_data" is the number of points and "d" the dimension
factor = scalar representing of how much you want to downsize the cloud
"""
data_ply=read_ply(data_path)
data = np.vstack((data_ply['x'], data_ply['y'], data_ply['z']))
data_decimated=data[:,0::factor]
directory = os.path.dirname(data_path) # Get the directory of the input file.
path = os.path.join(directory, 'data_decimated.ply')
write_ply(path, [data_decimated.T], ['x', 'y', 'z'])
def add_abberant_points(data,number,sigma):
"""
Add outliers/abberant point to a cloud by adding points at a Gaussian distance from a random point in data
Inputs :
data = (d x N_data) matrix where "N_data" is the number of points and "d" the dimension
number = scalar, the number of outliers added
sigma = scalar, the std of the Gaussian
Returns :
data_abberant = the initial data with outliers added
"""
num_points=data.shape[1]
data_abberant=data
for i in range(number):
#choose a point
ind=np.random.randint(num_points)
#create aberrant point
abberant=data[:,ind]+np.random.normal(0,sigma,size=data.shape[0])
data_abberant=np.concatenate((data_abberant,abberant[:,None]),axis=-1)
return data_abberant
def transfo(data,trans):
"""
Add a linear term on the wanted dimensions of data
Inputs :
data = (d x N_data) matrix where "N_data" is the number of points and "d" the dimension
trans = list of length d, where trans[i] is the translation for the i_th dimension
Returns :
data_trans = the initial data translated
"""
data_trans=data
for i,t in enumerate(trans) :
data_trans[i]+=np.ones(data.shape[1])*t
return data_trans