forked from gatk-workflows/gatk4-cnn-variant-filter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcram2model.wdl
245 lines (214 loc) · 7.33 KB
/
cram2model.wdl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# CRAM to trained CNNVariant Model
import "https://raw.githubusercontent.com/gatk-workflows/gatk4-cnn-variant-filter/1.1.0/tasks/cnn_variant_common_tasks.wdl" as CNNTasks
workflow Cram2TrainedModel {
File input_cram
File reference_fasta
File reference_dict
File reference_fasta_index
File truth_vcf
File truth_vcf_index
File truth_bed
String output_prefix
String tensor_type
Int? epochs
File calling_intervals
Int scatter_count
String extra_args
# Runtime parameters
File? gatk_override
String gatk_docker
Int? mem_gb
Int? preemptible_attempts
Int? disk_space_gb
Int? cpu
Int? increase_disk_size
Int additional_disk = select_first([increase_disk_size, 20])
Float ref_size = size(reference_fasta, "GB") + size(reference_fasta_index, "GB") + size(reference_dict, "GB")
call CNNTasks.CramToBam {
input:
reference_fasta = reference_fasta,
reference_dict = reference_dict,
reference_fasta_index = reference_fasta_index,
cram_file = input_cram,
output_prefix = output_prefix,
disk_space_gb = disk_space_gb,
preemptible_attempts = preemptible_attempts
}
call CNNTasks.SplitIntervals {
input:
scatter_count = scatter_count,
intervals = calling_intervals,
ref_fasta = reference_fasta,
ref_dict = reference_dict,
ref_fai = reference_fasta_index,
gatk_docker = gatk_docker,
gatk_override = gatk_override,
preemptible_attempts = preemptible_attempts
}
Float bam_size = size(CramToBam.output_bam, "GB")
scatter (calling_interval in SplitIntervals.interval_files) {
call CNNTasks.RunHC4 {
input:
input_bam = CramToBam.output_bam,
input_bam_index = CramToBam.output_bam_index,
reference_fasta = reference_fasta,
reference_dict = reference_dict,
reference_fasta_index = reference_fasta_index,
output_prefix = output_prefix,
interval_list = calling_interval,
gatk_docker = gatk_docker,
gatk_override = gatk_override,
preemptible_attempts = preemptible_attempts,
extra_args = extra_args,
disk_space_gb = round(bam_size + ref_size + additional_disk)
}
call WriteTensors {
input:
input_vcf = RunHC4.raw_vcf,
input_vcf_index = RunHC4.raw_vcf_index,
input_bam = RunHC4.bamout,
input_bam_index = RunHC4.bamout_index,
truth_vcf = truth_vcf,
truth_vcf_index = truth_vcf_index,
truth_bed = truth_bed,
tensor_type = tensor_type,
reference_fasta = reference_fasta,
reference_dict = reference_dict,
reference_fasta_index = reference_fasta_index,
output_prefix = output_prefix,
interval_list = calling_interval,
gatk_docker = gatk_docker,
gatk_override = gatk_override,
preemptible_attempts = preemptible_attempts,
disk_space_gb = disk_space_gb
}
}
call CNNTasks.MergeVCFs as MergeVCF_HC4 {
input:
input_vcfs = RunHC4.raw_vcf,
output_prefix = output_prefix,
gatk_override = gatk_override,
gatk_docker = gatk_docker,
preemptible_attempts = preemptible_attempts,
disk_space_gb = disk_space_gb
}
call CNNTasks.SamtoolsMergeBAMs {
input:
input_bams = RunHC4.bamout,
output_prefix = output_prefix,
disk_space_gb = round(bam_size + ref_size + additional_disk)
}
call TrainModel {
input:
tar_tensors = WriteTensors.tensors,
output_prefix = output_prefix,
tensor_type = tensor_type,
gatk_docker = gatk_docker,
gatk_override = gatk_override,
disk_space_gb = disk_space_gb,
epochs = epochs
}
output {
MergeVCF_HC4.*
SamtoolsMergeBAMs.*
TrainModel.*
}
}
task WriteTensors {
File input_bam
File input_bam_index
File input_vcf
File input_vcf_index
File reference_fasta
File reference_dict
File reference_fasta_index
File truth_vcf
File truth_vcf_index
File truth_bed
String output_prefix
String tensor_type
File interval_list
# Runtime parameters
String gatk_docker
File? gatk_override
Int? mem_gb
Int? preemptible_attempts
Int? disk_space_gb
Int? cpu
# You may have to change the following two parameter values depending on the task requirements
Int default_ram_mb = 8000
# Mem is in units of GB but our command and memory runtime values are in MB
Int machine_mem = if defined(mem_gb) then mem_gb *1000 else default_ram_mb
Int command_mem = machine_mem - 1000
command {
set -e
export GATK_LOCAL_JAR=${default="/root/gatk.jar" gatk_override}
mkdir "./tensors/"
gatk --java-options "-Xmx${command_mem}m" \
CNNVariantWriteTensors \
-R ${reference_fasta} \
-V ${input_vcf} \
-truth-vcf ${truth_vcf} \
-truth-bed ${truth_bed} \
-tensor-type ${tensor_type} \
-output-tensor-dir "./tensors/" \
-bam-file ${input_bam}
tar -czf "tensors.tar.gz" "./tensors/"
}
output {
File tensors = "tensors.tar.gz"
}
runtime {
docker: "${gatk_docker}"
memory: machine_mem + " MB"
disks: "local-disk " + disk_space_gb + " SSD"
}
}
task TrainModel {
Array[File] tar_tensors
String output_prefix
String tensor_type
Int? epochs
Int set_epochs = select_first([epochs, 100])
# Runtime parameters
String gatk_docker
File? gatk_override
Int? mem_gb
Int? preemptible_attempts
Int? disk_space_gb
Int? cpu
# You may have to change the following two parameter values depending on the task requirements
Int default_ram_mb = 8000
# Mem is in units of GB but our command and memory runtime values are in MB
Int machine_mem = if defined(mem_gb) then mem_gb *1000 else default_ram_mb
Int command_mem = machine_mem - 1000
command {
set -e
export GATK_LOCAL_JAR=${default="/root/gatk.jar" gatk_override}
for tensors in ${sep=' ' tar_tensors} ; do
tar -xzf $tensors
done
gatk --java-options "-Xmx${command_mem}m" \
CNNVariantTrain \
-input-tensor-dir "./tensors/" \
-model-name ${output_prefix} \
-image-dir "./" \
-tensor-type ${tensor_type} \
-epochs ${set_epochs}
}
output {
File model_json = "${output_prefix}.json"
File model_hd5 = "${output_prefix}.hd5"
File roc_png = "per_class_roc_${output_prefix}.png"
File training_png = "metric_history_${output_prefix}.png"
}
runtime {
docker: "${gatk_docker}"
#gpuType: "nvidia-tesla-k80" # This will require PAPI v2 and CUDA on VM
#gpuCount: 1
#zones: ["us-central1-c"]
memory: machine_mem + " MB"
disks: "local-disk 400 SSD"
bootDiskSizeGb: "16"
}
}