Skip to content

Latest commit

 

History

History
141 lines (95 loc) · 7.56 KB

solrini.md

File metadata and controls

141 lines (95 loc) · 7.56 KB

Solrini: Anserini Integration with Solr

This page documents code for replicating results from the following paper:

We provide instructions for setting up a single-node SolrCloud instance running locally and indexing into it from Anserini. Instructions for setting up SolrCloud clusters can be found by searching the web.

Setting up a Single-Node SolrCloud Instance

From the Solr archives, download the Solr (non -src) version that matches Anserini's Lucene version to the anserini/ directory.

Extract the archive:

mkdir solrini && tar -zxvf solr*.tgz -C solrini --strip-components=1

Start Solr:

solrini/bin/solr start -c -m 8G

Adjust memory usage (i.e., -m 8G as appropriate).

Run the Solr bootstrap script to copy the Anserini JAR into Solr's classpath and upload the configsets to Solr's internal ZooKeeper:

pushd src/main/resources/solr && ./solr.sh ../../../../solrini localhost:9983 && popd

Solr should now be available at http://localhost:8983/ for browsing.

The Solr index schema can also be modified using the Schema API. This is useful for specifying field types and other properties including multiValued fields.

Schemas for setting up specific Solr index schemas can be found in the src/main/resources/solr/schemas/ folder.

To set the schema, we can make a request to the Schema API:

curl -X POST -H 'Content-type:application/json' --data-binary @src/main/resources/solr/schemas/SCHEMA_NAME.json http://localhost:8983/solr/COLLECTION_NAME/schema

Indexing into SolrCloud from Anserini

We can use Anserini as a common "frontend" for indexing into SolrCloud, thus supporting the same range of test collections that's already included in Anserini (when directly building local Lucene indexes). Indexing into Solr is similar indexing to disk with Lucene, with a few added parameters. Most notably, we replace the -index parameter (which specifies the Lucene index path on disk) with Solr parameters.

We'll index robust04 as an example. First, create the robust04 collection in Solr:

solrini/bin/solr create -n anserini -c robust04

Run the Solr indexing command for robust04:

sh target/appassembler/bin/IndexCollection -collection TrecCollection -generator JsoupGenerator \
  -threads 8 -input /path/to/robust04 \
  -solr -solr.index robust04 -solr.zkUrl localhost:9983 \
  -storePositions -storeDocvectors -storeRaw

Make sure /path/to/robust04 is updated with the appropriate path.

Once indexing has completed, you should be able to query robust04 from the Solr query interface.

You can also run the following command to replicate Anserini BM25 retrieval:

sh target/appassembler/bin/SearchSolr -topicreader Trec \
  -solr.index robust04 -solr.zkUrl localhost:9983 \
  -topics src/main/resources/topics-and-qrels/topics.robust04.txt \
  -output run.solr.robust04.bm25.topics.robust04.txt

Evaluation can be performed using trec_eval:

eval/trec_eval.9.0.4/trec_eval -m map -m P.30 src/main/resources/topics-and-qrels/qrels.robust04.txt run.solr.robust04.bm25.topics.robust04.txt

These instructions can be straightforwardly adapted to work with the TREC Washington Post Corpus:

sh target/appassembler/bin/IndexCollection -collection WashingtonPostCollection -generator WapoGenerator \
   -threads 8 -input /path/to/WashingtonPost \
   -solr -solr.index core18 -solr.zkUrl localhost:9983 \
   -storePositions -storeDocvectors -storeContents

Make sure core18 collection is created and /path/to/WashingtonPost is updated with the appropriate path.

Solrini has also been verified to work with the MS MARCO Passage Retrieval Corpus. There should be no major issues with other collections that are supported by Anserini, but we have not tested them.

Solr integration test

We have an end-to-end integration testing script run_solr_regression.py. See example usage for core18 below:

# Check if Solr server is on
python src/main/python/run_solr_regression.py --ping

# Check if core18 exists
python src/main/python/run_solr_regression.py --check-index-exists core18

# Create core18 if it does not exist
python src/main/python/run_solr_regression.py --create-index core18

# Delete core18 if it exists
python src/main/python/run_solr_regression.py --delete-index core18

# Insert documents from /path/to/WashingtonPost into core18
python src/main/python/run_solr_regression.py --insert-docs core18 --input /path/to/WashingtonPost

# Search and evaluate on core18
python src/main/python/run_solr_regression.py --evaluate core18

To run end-to-end, issue the following command:

python src/main/python/run_solr_regression.py --regression core18 --input /path/to/WashingtonPost

The regression script has been verified to work for robust04, core18, and msmarco-passage.

Replication Log