-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_train.py
131 lines (120 loc) · 6.05 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import time
import os
import numpy as np
import torch.utils.data as dataloader
from config import MicroadenomaConfig
from utils.logger import Logger
from model.model import AEPformer
from tqdm import tqdm
from utils.data_utils import train_validate_split, pre_processingV2, NormalizationV2, get_metrics_dice, MicroadenomaDataset
from monai.losses import DiceFocalLoss, DiceCELoss
from utils.utils import DiceLogHDLoss, FocalLogHDLoss
import utils.augment as aug
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def evaluation(model, dataloader):
num = 0
with torch.no_grad():
dice_new_list = []
for batch in tqdm(dataloader):
image_val = NormalizationV2(batch['data'])
label_val = batch['seg']
image_val = image_val.to(device)
'''==================predicted=================='''
model.eval()
output = model(image_val)
_, predicton = torch.max(output.data, 1)
whole_pred = predicton.data.cpu().numpy().astype(np.int16)
whole_target = label_val[:, 0, ...].data.numpy().astype(np.int16)
'''==================calculate metric=================='''
dsc_itm = get_metrics_dice(whole_pred, whole_target)
dice_new_list.append(dsc_itm)
num += 1
dice_array = np.array(dice_new_list)
dice_mean = np.mean(dice_array, axis=0)
return dice_mean
if __name__ == "__main__":
config = MicroadenomaConfig()
mylogger = Logger("runs", write=True, save_freq=4)
mylogger.log(config.get_str_config())
mylogger.save_pkl(config)
train_data_path_list, val_data_path_list = train_validate_split(config.dataset_path, train_ratio=config.train_ratio, seed=1)
sometimes = lambda augmentor: aug.Sometimes(0.3, augmentor) # Used to apply augmentor with specified probability
augment_train = aug.Sequential([
sometimes(aug.HorizontalFlip()),
sometimes(aug.VerticalFlip()),
sometimes(aug.RandomRotate(30))
])
dataset_train = MicroadenomaDataset(data_path_list=train_data_path_list,
frame_num=config.frame_num,
crop_size=config.crop_size,
crop_ratio=config.crop_ratio,
transfor=augment_train)
dataset_val = MicroadenomaDataset(data_path_list=val_data_path_list,
frame_num=config.frame_num,
crop_size=config.crop_size,
crop_ratio=config.crop_ratio)
train_loader = dataloader.DataLoader(dataset_train, batch_size=config.batch_size)
val_loader = dataloader.DataLoader(dataset_val, batch_size=1)
model = AEPformer(frame_num=config.frame_num,
img_shape=config.patch_size,
output_channel=config.n_class,
resnet_depth=config.resnet_depth,
resnet_out_channels=config.resnet_out_channels,
dropout=config.dropout).to(device)
criterion = DiceFocalLoss(include_background=False, to_onehot_y=True, softmax=True)
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr, weight_decay=1e-5, betas=(0.97, 0.999))
scheduler_lr = torch.optim.lr_scheduler.StepLR(optimizer, step_size=config.lr_step_size, gamma=config.lr_ratio)
best_dice_val = 0
best_val_num = -1
mylogger.log('LR\t\t\tepoch\tLoss \tDSC_BG\t\tDSC_MP\t\tDSC_MA')
for epoch in range(config.n_epoch):
num_batches_per_epoch = 0
model.train()
loss_epoch = 0
beta_epoch = 0
epoch_start_time = time.time()
'''===================== Training ====================='''
for batch in tqdm(train_loader):
image_data, label_data = pre_processingV2(batch)
image_data = image_data.to(device)
label_data = label_data.to(device)
'''============== forward =============='''
optimizer.zero_grad()
pred = model(image_data)
loss = criterion(pred, label_data)
'''======== backward and optimize ======'''
loss.backward()
optimizer.step()
loss_epoch += loss.item()
num_batches_per_epoch += 1
epoch_train_end = time.time()
loss_epoch /= num_batches_per_epoch
'''===================== Validation ====================='''
if epoch % config.val_step == 0:
metric_val = evaluation(model, val_loader)
mylogger.log('%0.6f\t%6d\t\t%0.5f\t%0.5f\t\t%0.5f\t\t%0.5f' % (
optimizer.state_dict()["param_groups"][0]['lr'],
epoch,
loss_epoch,
metric_val[0], metric_val[1], metric_val[2]))
structure = ["DSC_bg", "DSC_WP", "DSC_MA"]
board_info= {structure[i]: metric_val[i] for i in range(len(metric_val))}
mylogger.write_to_board(f"Validation/score", board_info, epoch)
mylogger.write_to_board(f"Loss", {"loss": loss_epoch}, epoch)
'''===================== save model ====================='''
if epoch % config.save_step == 0:
mylogger.save_model(model.state_dict(), f"checkpoint_{epoch}.pt", forced=True)
if np.mean(metric_val[1:])>best_dice_val:
best_checkpoint_path = os.path.join(mylogger.dir, f"best_checkpoint_{best_val_num}.pt")
if os.path.exists(best_checkpoint_path):
os.remove(best_checkpoint_path)
best_val_num = epoch
mylogger.save_model(model.state_dict(), f"best_checkpoint_{best_val_num}.pt", forced=True)
best_dice_val = np.mean(metric_val[1:])
'''==== save the latest checkpoint ===='''
mylogger.save_model(model.state_dict(), "latest_checkpoint.pt", forced=True)
'''================== learning rate decay ================='''
scheduler_lr.step()
epoch_end_time = time.time()