-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathOpticsModule.m
444 lines (373 loc) · 21.1 KB
/
OpticsModule.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
% ------------- DOKUMENTATION OF THIS FUNCTION -------------
%
% #DESCRIPTION: This function calculates the optics of an arbitrary layer stack consisting of optically thick and thin layers,
% whereas the optically thick layers are treated incohrent and can be textured.
% The coherent treatment of light propagation is calculated with the transfer matrix method (TMM). For the TMM
% calculations, we adapted parts of the TMM code of Steven Byrnes.
% The optically thick layers are treated by simple calculation of the absorption in the dielectric layers via
% the Beer-Lambert law. Those optically thick layers can additionally be textured. These textures can be handled
% using geometrical ray-tracing as described by Baker-Finch and McIntosh. For this, path data is extracted from
% OPAL2. Own path data can be used as well!
% 1. The full stack is devided in incoherent and coherent partial layer stacks
% 2. Cohrent stack (with incohrent boundaries are calculated with TMM
% 3. Incoherent layers are treated with Lambert Beer and their interfaces with Fresnel
% 4. PathRAT function redistributes the R,T,A matrices [aoi × lambda] to tensors [aoi × exit angle × lambda]
% 5. R,T,A properties of Partial stacks are interativly connected via AddIncoherent or AddCoherentIncoherent
%
% #INPUT: IndRefr - Refractive index structure with two fields: nkdata, names
% Stack - Cell with layer names
% LayerThicknesses - Array with layer thicknesses in nm
% AngleResolution - Angle resolution of TMM calculations (should not be >10°)
% Morphology - Angle resolution of TMM calculations (should not be >10°)
% bifacial - Boolean for bifacial option
% pol - Polarization of optical simulations
% lambda - Wavelength array in nm
% PathOpticsResults - Path to store and check for optics results
% StoreInDatabase - Boolean for storing simulations in a database
% IncoherentLayers - Cell with strings layer names, which should be treated incoherently - can be empty cell
% Absorbers - Cell with names of the absorbers in the stack - can be empty cell
%
%
% #OUTPUT: optics struct:
% Reflectance: [aoi × exit angle × lambda]
% Absorptance: [layer × aoi × lambda]
% Transmittance: [aoi × lambda]
% lambda: [1 × lambda]
% AbsorberIndex: [array]
% hash: [string]
% %
% #SAVED DATA: The database file: "_OPTICSdatabase.txt" and corresponding *.mat files of the simulation results
%
% #REQUIRED SUBFUNCTIONS: AddIncoherent, AddIncoherentCoherent, coh_tmm, coh_tmm_reverse, flipmorph, Fresnel, interpTMM, Lambert,
% LoadRefrIndex, makehash, PathRAT
%
% #ADD COMMENTS: Angle redistribution with PathRAT does lead to underestimated A in textured interfaces close to the bandgap
% e.g. absorption in single or double-sided textured Si is slightly off. Easy fix: increase Si thickness by ~ *2
% in case no reflecting layer (e.g. metal) is on rear texture. See documentation for details.
% pathRATnew() tries to improve this by calculating the transmittance angles and following the bounces.
% This however, this only slightly improves the issue and slows down the simulation time.
%
% -----------------------------------------------------------
%
function optics = OpticsModule(IndRefr,Stack,LayerThicknesses,AngleResolution,Morphology,bifacial,pol,lambda,PathOpticsResults,StoreInDatabase,IncoherentLayers,Absorbers)
% Begin optics code
warning('off','backtrace'); % hide line info in warnings
disp('Running Optics Module...');
tic
%% Check input for problems in the input to this function
if length(LayerThicknesses)~=numel(Stack)
error('foo:bar',['Number of Layers (',num2str(numel(Stack)),...
') does not match the number of thicknesses (',num2str(length(LayerThicknesses)),')!' ]);
return; %#ok<UNRCH>
end
if ~exist('Absorbers','var')
if ~exist('IncoherentLayers','var')
warning('No incoherent layers are defined! The default will be used: air, glass, eva, encapsulation and pdms');
IncoherentLayers = {'Air','Glass','EVA','Encapsulation','PDMS'}; % define default incohrent layers
end
warning('Absorbers in current stack are not defined. No worries, we try to take care of that.');
Absorbers = {};
elseif isempty(Absorbers)
warning('Absorbers in current stack are not defined. No worries, we try to take care of that.');
Absorbers = {};
end
%% Make hash(es) and get/make filenames and filename of database
[DataOpticsResults,DBOpticsResults,StrLine,Hash]=gennames;
%% Check for database to load optics data
if StoreInDatabase
% Create database file, if not there
if ~isfile(DBOpticsResults)
fclose(fopen(DBOpticsResults, 'w'));
end
if contains(fileread(DBOpticsResults), StrLine(1,:)) && exist(DataOpticsResults(1,:), 'file') == 2
load(DataOpticsResults(1,:));
disp('Simulation was performed before. Data is loaded from database.');
else
optics = runoptics;
optics.hash = Hash(1,:);
saveresults(DataOpticsResults(1,:),StrLine(1,:))
end
if bifacial == 1
if contains(fileread(DBOpticsResults), StrLine(2,:)) && exist(DataOpticsResults(2,:), 'file') == 2
load(DataOpticsResults(2,:));
disp('Simulation was performed before. Data is loaded from database.');
else
Stack = flip(Stack);
LayerThicknesses = flip(LayerThicknesses);
Morphology = flip(Morphology);
optics = runoptics;
optics.hash = Hash(2,:);
saveresults(DataOpticsResults(2,:),StrLine(2,:))
end
optics_back = optics;
load(DataOpticsResults(1,:));
optics.hash = optics_back.hash+optics.hash;
optics.Reflectance_back = optics_back.Reflectance;
optics.Absorptance_back = optics_back.Absorptance;
optics.Transmittance_back = optics_back.Transmittance;
optics.AbsorberIndex_back = numel(Stack) - optics.AbsorberIndex - 1;
end
else
optics = runoptics;
optics.hash = Hash(1,:);
if bifacial == 1
Stack = flip(Stack);
LayerThicknesses = flip(LayerThicknesses);
Morphology = flip(Morphology);
optics_back = runoptics;
optics.hash = Hash(1,:)+Hash(2,:);
optics.Reflectance_back = optics_back.Reflectance;
optics.Absorptance_back = optics_back.Absorptance;
optics.Transmittance_back = optics_back.Transmittance;
optics.AbsorberIndex_back = numel(Stack) - optics.AbsorberIndex - 1;
end
end
disp(char(strcat('...finished after',{' '},num2str(toc),{' '},'seconds')));
%% Core optics function
function optics = runoptics
%% Define some stuff
MorphologyBack = flipmorph(Morphology); % flip morphologies for backward simulations
TMMAngleRange=[0:AngleResolution:88,89]; % define angle range for TMM
AngleRange=0:89; % define angle range for outpt
ThicknessThreshold = 5E3; % threshold of cohrent layer in nm
%% Predefine variables and load material data
n = zeros(size(Stack,2),size(lambda,2));
for index = 1:size(Stack,2)
n(index,:) = LoadRefrIndex(Stack{index},lambda,IndRefr.nkdata,IndRefr.names);
end
%% Analyze the stack
% Check for a match in Stack
Match = or( cell2mat(cellfun(@(x) contains(x, IncoherentLayers), Stack, 'UniformOutput', 0)), LayerThicknesses>ThicknessThreshold );
% Define temporary variables to track the positions of incohrent or
% coherent layers as well as to organize the stack splitting
% pos_i positions of incohrent layers
% pos_ii position of incohrent/incohrent interface in Rf,Tf,..
% pos_c position of cohrent layers
% pairs_i position of two successive incohrent layers
% pairs_tmm position of incohrent layers forming TMM boundaries
% pairs_all position of each partial stack
pos_i = 1:length(Match);
pos_i = pos_i(Match(1:end));
pairs_i = [strfind(Match, [1,1]);strfind(Match, [1,1])+1];
pos_ii = 1:length(pos_i);
pos_ii = pos_ii(((pos_i(2:end))-pos_i(1:end-1))==1); pos_ii(isempty(pos_ii))=0; % set 0, if not found
pos_c = 1:length(pos_i);
pos_c = pos_c(logical(1-sum((pos_c-pos_ii')==0,1)));
pos_c = pos_c(1:end-1);
pairs_tmm = reshape(sort([strfind(Match, [1 0]), strfind(Match, [0 1])+1]),2,[]);
pairs_all = sort([pairs_tmm,pairs_i],2);
% Check if each incohrent layer has a morphology
if numel(Morphology) ~= length(pos_i)-1
error('foo:bar',['The number of assigned morphologies (',num2str(numel(Morphology)), ...
') does not match the number of incoherent layers (',num2str(length(pos_i)-1),')!\n\n', ...
'Note: For each incoherent layer (except the first) a textured needs to be defined.']);
return; %#ok<UNRCH>
end
% Preallocate the cells to store "RAT" data of TMM or Fresnel inside
[Rf, Af, Tf, Rb, Ab, Tb] = deal(cell(size(pos_i,2)-1,1)); % initialize R,T fw and bw
%% Calculate Lambert Beer absorption in incoherent layers
Aincoherent = cell(length(pos_i)-2,1); % initialize cell
for i=2:length(pos_i)-1 % for each (i)<last
Aincoherent{i-1} = Lambert(n(pos_i(i),:),LayerThicknesses(pos_i(i)),lambda);
% figure; imagesc(Aincoherent{i});
end
%% Calculate Fresnel reflection and transmittance at the interface of two incoherent layers
% Fresnel(n1,n2,pol,lambda) takes care of absorbing media by switching to TMM in case imag(n1)~=0
% This is essential for e.g. air/cSi - here Fresnel() would fail in the short wvl region
% due to strong absorption coefficient in cSi.
for i=1:size(pairs_i,2)
j=pos_ii(i); % index of position where two incohrent layers are
[Rf{j},Tf{j}] = Fresnel((n(pairs_i(1,i),:)),(n(pairs_i(2,i),:)),pol,lambda); % R,T forward
[Rb{j},Tb{j}] = Fresnel((n(pairs_i(2,i),:)),(n(pairs_i(1,i),:)),pol,lambda); % R,T backward
[Af{j},Ab{j}] = deal(zeros([1 size(Rf{j})]));
% figure; imagesc(Rf{j});
% figure; imagesc(Tf{j});
end
%% Calculate TMM for TMM stacks
% Preallocate cells
[Rf_TMM_TE, Af_TMM_TE, Tf_TMM_TE, Rb_TMM_TE, Ab_TMM_TE, Tb_TMM_TE] = deal(cell(size(pairs_tmm,2),1));
[Rf_TMM_TM, Af_TMM_TM, Tf_TMM_TM, Rb_TMM_TM, Ab_TMM_TM, Tb_TMM_TM] = deal(cell(size(pairs_tmm,2),1));
% Loop over number of TMM stacks
for i=1:size(pairs_tmm,2)
j=pos_c(i); % index of position where two TMM layer stack is
b = pairs_tmm(1,i):pairs_tmm(2,i); % Layer range for TMM stack
c = LayerThicknesses(b); % Thicknesses of i-th TMM stack
c([1,end]) = Inf; % Change incoherent boundary to Inf
if strcmp(pol,'TE') || strcmp(pol,'TM') % Check pol and calculate TMM
for aoi=1:length(TMMAngleRange) % Loop over angle of incidence
[Rf{j}(aoi,:),Af{j}(:,aoi,:),Tf{j}(aoi,:),~] = coh_tmm(pol, n(b,:).', c, TMMAngleRange(aoi), lambda);
[Rb{j}(aoi,:),Ab{j}(:,aoi,:),Tb{j}(aoi,:),~] = coh_tmm_reverse(pol, n(b,:).', c, TMMAngleRange(aoi), lambda);
end
elseif strcmp(pol,'mixed')
for aoi=1:length(TMMAngleRange)
% TMM for TE - fw and bw
[Rf_TMM_TE{i}(aoi,:),Af_TMM_TE{i}(:,aoi,:),Tf_TMM_TE{i}(aoi,:),~] = coh_tmm('TE', n(b,:).', c, TMMAngleRange(aoi), lambda);
[Rb_TMM_TE{i}(aoi,:),Ab_TMM_TE{i}(:,aoi,:),Tb_TMM_TE{i}(aoi,:),~] = coh_tmm_reverse('TE', n(b,:).', c, TMMAngleRange(aoi), lambda);
% TMM for TM - fw and bw
[Rf_TMM_TM{i}(aoi,:),Af_TMM_TM{i}(:,aoi,:),Tf_TMM_TM{i}(aoi,:),~] = coh_tmm('TM', n(b,:).', c, TMMAngleRange(aoi), lambda);
[Rb_TMM_TM{i}(aoi,:),Ab_TMM_TM{i}(:,aoi,:),Tb_TMM_TM{i}(aoi,:),~] = coh_tmm_reverse('TM', n(b,:).', c, TMMAngleRange(aoi), lambda);
end
% Average TE and TM polarization in order to obtain mixed polarization
Rf{j} = ( Rf_TMM_TE{i} + Rf_TMM_TM{i} ) /2;
Af{j} = ( Af_TMM_TE{i} + Af_TMM_TM{i} ) /2;
Tf{j} = ( Tf_TMM_TE{i} + Tf_TMM_TM{i} ) /2;
Rb{j} = ( Rb_TMM_TE{i} + Rb_TMM_TM{i} ) /2;
Ab{j} = ( Ab_TMM_TE{i} + Ab_TMM_TM{i} ) /2;
Tb{j} = ( Tb_TMM_TE{i} + Tb_TMM_TM{i} ) /2;
% Interpolate the data to 1 deg of incidence
[Rf{j}, Af{j}, Tf{j}, ~] = interpTMM(Rf{j}, Af{j}, Tf{j}, n(pairs_tmm(1,i),:), n(pairs_tmm(2,i),:), c, TMMAngleRange, lambda);
[Rb{j}, Ab{j}, Tb{j}, ~] = interpTMM(Rb{j}, Ab{j}, Tb{j}, n(pairs_tmm(1,i),:), n(pairs_tmm(2,i),:), c, TMMAngleRange, lambda);
end
end
% for i=1:size(Rf,1)
% figure; imagesc(Tf{i})
% end
%% Calculate RAT of textured interfaces
% There are two possibilities. PathRAT() and PathRATnew(). The first
% one, is a rough and stable function. Since, the path data do not
% provide transmittance angles, this version produces underestimation
% of absorption e.g. in textured c-Si near the bandgap.
% In order to avoid this, the angles are explicitly calculated.
% PathRATnew() tries to improve this. However, altough the angular
% distribution matches almost the raytracing results, still there is an
% offset. This function, still needs to be improved.
for i=1:length(pos_i)-1
if ischar(Morphology{i}) && ~strcmp(Morphology{i},'4n^2')
% Calculate forward RAT
[Rf{i},Af{i},Tf{i}] = PathRAT(Morphology{i},Rf{i},Af{i},Tf{i},AngleRange,lambda,n(pairs_all(1,i),:),n(pairs_all(2,i),:));
% [Rf{i},Af{i},Tf{i}] = PathRATnew(Morphology{i},Rf{i},Af{i},Tf{i},AngleRange,lambda,n(pairs_all(1,i),:),n(pairs_all(2,i),:));
% Calculate backward RAT
if i<length(pos_i)-1
[Rb{i},Ab{i},Tb{i}] = PathRAT(MorphologyBack{i},Rb{i},Ab{i},Tb{i},AngleRange,lambda,n(pairs_all(2,i),:),n(pairs_all(1,i),:));
% [Rb{i},Ab{i},Tb{i}] = PathRATnew(MorphologyBack{i},Rb{i},Ab{i},Tb{i},AngleRange,lambda,n(pairs_all(2,i),:),n(pairs_all(1,i),:));
% set backward RAT for last interface to zero
else
[Rb{i},Tb{i}] = deal(zeros(size(Rf{i})));
Ab{i} = zeros(size(Af{i}));
end
end
end
%% Connect the partial stacks
for i=1:length(pos_i)-2 % loop over all partial stacks, maybe replace by: size(pairs_all,2)-1
% break >last< loop if silicon is calculated with a light trapping model
if i==length(pos_i)-2 && (~ischar(Morphology{end}) || strcmp(Morphology{end},'4n^2'))
break;
end
% x + i ...+i
if numel(Match(pos_i(i):pos_i(i+2))) == 3 || sum(Af{i+1}(:))==0
if i==1 % if this is the first occurance
[Rftot,Aftot,Tftot,Rbtot,Abtot,Tbtot] = AddIncoherent(Rf{i},Af{i},Tf{i},Rb{i},Ab{i},Tb{i},Aincoherent{i},Rf{i+1},Rb{i+1},Tf{i+1},Tb{i+1});
else
[Rftot,Aftot,Tftot,Rbtot,Abtot,Tbtot] = AddIncoherent(Rftot,Aftot,Tftot,Rbtot,Abtot,Tbtot,Aincoherent{i},Rf{i+1},Rb{i+1},Tf{i+1},Tb{i+1});
end
% x + i+c ...+i
else
if i==1 % if this is the first occurance
[Rftot,Aftot,Tftot,Rbtot,Abtot,Tbtot] = AddIncoherentCoherent(Rf{i},Af{i},Tf{i},Rb{i},Ab{i},Tb{i},Aincoherent{i},Rf{i+1},Af{i+1},Tf{i+1},Rb{i+1},Ab{i+1},Tb{i+1});
else
[Rftot,Aftot,Tftot,Rbtot,Abtot,Tbtot] = AddIncoherentCoherent(Rftot,Aftot,Tftot,Rbtot,Abtot,Tbtot,Aincoherent{i},Rf{i+1},Af{i+1},Tf{i+1},Rb{i+1},Ab{i+1},Tb{i+1});
end
end
% reshape transmittance data in last loop
if i == (length(pos_i)-2)
Tftot = reshape(sum(Tftot,2),size(Tftot,1),size(Tftot,3));
end
end
% if only coherent stack with incoherent bondary is given
if size(Rf,1)==1
Rftot = Rf{1};
Aftot = Af{1};
Tftot = reshape(sum(Tf{1},2),size(Tf{1},1),size(Tf{1},3));
end
% Calculate light trapping model for Silicon:
% if only Si (e.g.)
if ( strcmp(Morphology{end},'4n^2') || (isnumeric(Morphology{end}) && ~strcmp(Morphology{end},'4n^2')) ) && ~exist('Rftot','var')
Rftot = Rf{1};
Aftot = Af{1};
Tftot = Tf{1};
end
if strcmp(Morphology{end},'4n^2')
Z = 4*real(n(pairs_all(1,end),:)).^2;
Aftot(end+1,:,:) = reshape(sum(Tftot,2),size(Tftot,1),size(Tftot,3)) .* repmat(1-exp(-(4*pi./lambda)...
.*imag(n(pairs_all(1,end),:)).*LayerThicknesses(pairs_all(1,end)).*Z),[90 1]);
Tftot = reshape(sum(Tftot,2),size(Tftot,1),size(Tftot,3)) - reshape(Aftot(end,:,:),size(Aftot,2),size(Aftot,3));
elseif isnumeric(Morphology{end}) && ~strcmp(Morphology{end},'4n^2')
if ~isnumeric(Morphology{end})
Morphology{end} = str2double(Morphology{end});
end
Z = Morphology{end}*ones(1,length(lambda));
Aftot(end+1,:,:) = reshape(sum(Tftot,2),size(Tftot,1),size(Tftot,3)) .* repmat(1-exp(-(4*pi./lambda)...
.*imag(n(pairs_all(1,end),:)) .* LayerThicknesses(pairs_all(1,end)).*Z),[90 1]);
Tftot = reshape(sum(Tftot,2),size(Tftot,1),size(Tftot,3)) - reshape(Aftot(end,:,:),size(Aftot,2),size(Aftot,3));
end
%% Put everything into the optics struct
% Results are converted to single precission - this is sufficient!
% This saves 50% of storage and speeds up saving/loading.
optics.Reflectance = single(Rftot);
optics.Absorptance = single(Aftot);
optics.Transmittance = single(Tftot);
optics.lambda = lambda;
%% auto detect absorber layers, in case nothing is defined
if isempty(Absorbers)
A = sum(sum(Aftot(:,1,:),3),2); A=A/max(A);
if length(A)<3
[~,optics.AbsorberIndex]=max(A);
else
[~,optics.AbsorberIndex]=findpeaks([A;0]','Threshold',1/3);
end
else
optics.AbsorberIndex = find(matches(Stack,Absorbers) == 1);
optics.AbsorberIndex = optics.AbsorberIndex - (length(Stack) - size(Aftot,1) - 1); % correct for offset
end
%% Save vectors for normal incidence and absorbers only
optics.A = squeeze(optics.Absorptance(optics.AbsorberIndex,1,:))';
optics.R = squeeze(sum(optics.Reflectance(1,:,:),2));
optics.T = squeeze(optics.Transmittance(1,:))';
end
%% #########################
% Helper functions below
%# #########################
%% Generate filename function
function [DataOpticsResults,DBOpticsResults,StrLine,Hash] = gennames
% Generate a string of the defined optics input parameters
opticstring = strjoin({strjoin(Stack),...
strjoin(strsplit(num2str(LayerThicknesses)),' '),...
strjoin(Morphology),...
pol,...
num2str(lambda(1)), num2str(lambda(2)-lambda(1)), num2str(lambda(end)),...
num2str(AngleResolution),...
strjoin(Absorbers),...
strjoin(IncoherentLayers)},', ');
% Generate SHA1 hash of the defined parameters and set some filenames
Hash(1,:) = makehash(opticstring);
StrLine = strcat(strjoin(strcat([Hash(1,:),', ']),''), opticstring);
% Build file names for optics data & database
DataOpticsResults = strcat(PathOpticsResults,Hash(1,:) ,'.mat');
DBOpticsResults = strcat(PathOpticsResults,'_OPTICSdatabase.txt');
if bifacial == 1
% Generate a string of the defined optics input parameters
opticstring = strjoin({strjoin(flip(Stack)),...
strjoin(strsplit(num2str(flip(LayerThicknesses))),' '),...
strjoin(flip(Morphology)),...
pol,...
num2str(lambda(1)), num2str(lambda(2)-lambda(1)), num2str(lambda(end)),...
num2str(AngleResolution),...
strjoin(Absorbers),...
strjoin(IncoherentLayers)},', ');
% Generate SHA1 hash of the defined parameters and set some filenames
Hash(2,:) = makehash(opticstring);
StrLine(2,:) = strcat(strjoin(strcat([Hash(2,:),', ']),''), opticstring);
% Build file names for optics data & database
DataOpticsResults(2,:) = strcat(PathOpticsResults,Hash(2,:) ,'.mat');
end
end
%% Save data
function saveresults(fname,strname)
% write hash to database
fileID = fopen(DBOpticsResults,'a');
fprintf(fileID, strcat(strname,'\n'));
fclose(fileID);
% Save the optics data to a file
save(fname,'optics');
end
end