-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
87 lines (76 loc) · 2.5 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import albumentations as A
from albumentations.pytorch import ToTensorV2
EPSILON = 1e-5
LEARNING_RATE = 1e-4
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu';
BATCH_SIZE = 2;
IMAGE_SIZE =1024
WARMUP_EPOCHS = 10;
D_PROJECT_ROOT = 'C:\\Users\\Admin\\OneDrive - University of Guelph\Miscellaneous\Diaphragm'
ST_PROJECT_ROOT = 'C:\\Users\\Admin\\OneDrive - University of Guelph\Miscellaneous\\Sternum'
SP_PROJECT_ROOT = 'C:\\Users\\Admin\\OneDrive - University of Guelph\Miscellaneous\\TipsSP'
SR_PROJECT_ROOT = 'C:\\Users\\Admin\\OneDrive - University of Guelph\Miscellaneous\\Spine and Ribs'
IMAGE_DATASET_ROOT = 'C:\\Users\\Admin\\OneDrive - University of Guelph\Miscellaneous\\DVVD-Final'
pre_transforms = A.Compose([
#A.HorizontalFlip(p=0.5),
A.OneOf([
A.Sequential([
A.RandomGamma((200.0,500.0), p=1.0),
A.GaussNoise((50,200), mean = 10, p=0.75)
]),
# A.Sequential([
# A.RandomGamma((200.0,500.0), p=1.0),
# A.GaussNoise((50,200), mean = 10, p=0.75)
# ]),
], p = 1.0),
])
hist_flip_resize_transforms = A.Compose(
[
#A.CLAHE(clip_limit=2.0, tile_grid_size=(8,8), always_apply=True, p = 1.0),
#A.HorizontalFlip(p=0.5),
A.Resize(IMAGE_SIZE,IMAGE_SIZE),
],
additional_targets={'mask': 'mask'}
)
to_tensor_transforms = A.Compose(
[
ToTensorV2(),
],
additional_targets={'mask': 'mask'}
)
valid_transforms = A.Compose(
[
#A.CLAHE(clip_limit=2.0, tile_grid_size=(8,8), always_apply=True, p = 1.0),
A.Resize(IMAGE_SIZE,IMAGE_SIZE),
A.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]),
ToTensorV2()
]
)
overexposure_transforms = A.Compose([
A.OneOf([
A.Sequential([
A.RandomGamma((200.0,500.0), p=1.0),
A.GaussNoise((50,200), mean = 10, p=0.75)
]),
], p = 1.0),
])
underexposure_transforms = A.Compose([
#A.HorizontalFlip(p=0.5),
A.OneOf([
A.Sequential([
A.RandomGamma((200.0,500.0), p=1.0),
A.GaussNoise((50,200), mean = 10, p=0.75)
]),
], p = 1.0),
])
train_transforms = A.Compose(
[
A.HorizontalFlip(p=0.5),
A.CLAHE(clip_limit=2.0, tile_grid_size=(8,8), always_apply=True, p = 1.0),
A.Resize(IMAGE_SIZE,IMAGE_SIZE),
A.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]),
ToTensorV2(),
],
additional_targets={'mask': 'mask'}
)