From 12622a0d17861ab8b733e9f53feaaf851f86e4b3 Mon Sep 17 00:00:00 2001 From: PharmCat Date: Sun, 21 Mar 2021 14:06:02 +0300 Subject: [PATCH] v0.7.1f --- Project.toml | 2 +- change.log | 2 ++ docs/src/bioequivalence.md | 5 +++++ src/Metida.jl | 4 ++-- test/test.jl | 7 ++++--- 5 files changed, 14 insertions(+), 6 deletions(-) diff --git a/Project.toml b/Project.toml index a15b9bf7..8bb62b06 100644 --- a/Project.toml +++ b/Project.toml @@ -19,7 +19,7 @@ CategoricalArrays = "0.8, 0.9" Distributions = "0.20, 0.21, 0.22, 0.23, 0.24" ForwardDiff = "0.10" LineSearches = "7" -Optim = "0.19, 0.20, 0.21, 0.22, 1.0, 1.1, 1.2" +Optim = "1.0, 1.1, 1.2, 1.3" StatsBase = "0.29, 0.30, 0.31, 0.32, 0.33" StatsModels = "0.6" Tables = "1" diff --git a/change.log b/change.log index afe92341..ff4ef94a 100644 --- a/change.log +++ b/change.log @@ -5,6 +5,8 @@ v0.7.1 * F value (test) * C matrix - pinv to inv * minor Show bugfix + * changes in tests - stable models used + * export StatsBase methods * documentation v0.7.0 diff --git a/docs/src/bioequivalence.md b/docs/src/bioequivalence.md index 7ee62513..a4bca1cb 100644 --- a/docs/src/bioequivalence.md +++ b/docs/src/bioequivalence.md @@ -28,3 +28,8 @@ fit!(lmm) ci = confint(lmm)[end] exp.(ci) .* 100.0 ``` + +## Reference + + * [Annex](https://www.ema.europa.eu/en/documents/other/31-annex-i-statistical-analysis-methods-compatible-ema-bioequivalence-guideline_en.pdf) I for EMA’s Guideline on the Investigation of Bioequivalence + * [FDA Guidance for Industry: Statistical Approaches to Establishing Bioequivalence](https://www.fda.gov/media/70958/download), APPENDIX F diff --git a/src/Metida.jl b/src/Metida.jl index 6c465eb9..0d4e5119 100644 --- a/src/Metida.jl +++ b/src/Metida.jl @@ -29,6 +29,8 @@ fit!, LMM, VarEffect, theta, logreml, m2logreml, thetalength, dof_satter, dof_co gmatrix, rmatrix, vmatrix!, AbstractCovarianceType, AbstractCovmatMethod, MetidaModel +export coef, coefnames, confint, nobs, dof_residual, dof, loglikelihood, aic, bic, aicc, isfitted, vcov, stderror, modelmatrix, response + include("abstracttype.jl") include("sweep.jl") include("varstruct.jl") @@ -71,8 +73,6 @@ function _precompile_() precompile(Tuple{typeof(Metida.initvar), Array{Float64, 1}, Array{Float64, 2}}) - #precompile(Tuple{typeof(Metida.intersectsubj), Array{VarEffect, 1}, VarEffect}) - end _precompile_() #include(".jl") diff --git a/test/test.jl b/test/test.jl index 69966419..a432310a 100644 --- a/test/test.jl +++ b/test/test.jl @@ -186,7 +186,7 @@ end @test Metida.m2logreml(lmm) ≈ 10.065239006121315 atol=1E-6 end ################################################################################ -# ftdf +# ftdf / 1fptime.csv ################################################################################ @testset " Model: Categorical * Continuous predictor, CSH/SI " begin # nowarn @@ -209,10 +209,11 @@ end @test Metida.m2logreml(lmm) ≈ 1300.1807598168923 atol=1E-6 end ################################################################################ -# ftdf2 +# ftdf2 / 1freparma.csv ################################################################################ @testset " Model: Categorical * Continuous predictor, 0/ARMA " begin # nowarn + # SPSS 715.452856 io = IOBuffer(); lmm = Metida.LMM(@formula(response ~ 1 + factor*time), ftdf2; repeated = Metida.VarEffect(Metida.@covstr(time|subject&factor), Metida.ARMA), @@ -239,7 +240,7 @@ end @test Metida.m2logreml(lmm) ≈ 731.7794071577566 atol=1E-6 end ################################################################################ -# ftdf3 +# ftdf3 / 2f2rand.csv ################################################################################ @testset " Model: CS, CS/SI " begin lmm = Metida.LMM(@formula(response ~ 1 + factor), ftdf3; contrasts=Dict(:factor => DummyCoding(; base=1.0)),