diff --git a/Project.toml b/Project.toml index 013d4ad7..f668a1e0 100644 --- a/Project.toml +++ b/Project.toml @@ -3,7 +3,7 @@ uuid = "a1dec852-9fe5-11e9-361f-8d9fde67cfa2" keywords = ["lenearmodel", "mixedmodel"] desc = "Mixed-effects models with flexible covariance structure." authors = ["Vladimir Arnautov "] -version = "0.14.6" +version = "0.14.7" [deps] DiffResults = "163ba53b-c6d8-5494-b064-1a9d43ac40c5" @@ -23,10 +23,10 @@ DiffResults = "1" Distributions = "0.20, 0.21, 0.22, 0.23, 0.24, 0.25" ForwardDiff = "0.10" LineSearches = "7" -MetidaBase = "0.11" +MetidaBase = "0.11, 0.12" Optim = "1" ProgressMeter = "1" -StatsBase = "0.29, 0.30, 0.31, 0.32, 0.33" +StatsBase = "0.29, 0.30, 0.31, 0.32, 0.33, 0.34" StatsModels = "0.7" julia = "1" diff --git a/docs/src/examples.md b/docs/src/examples.md index 21087aff..27a0fcd9 100644 --- a/docs/src/examples.md +++ b/docs/src/examples.md @@ -1,11 +1,11 @@ ### Example 1 - Continuous and categorical predictors ```@example lmmexample -using Metida, CSV, DataFrames, CategoricalArrays; +using Metida, CSV, DataFrames, CategoricalArrays, Plots; import Pkg Pkg.activate("MixedModels") -Pkg.add(name="Example", version="3.1.5") +Pkg.add(name="MixedModels", version="3.1.5") using MixedModels diff --git a/src/lmm.jl b/src/lmm.jl index 94b16627..af444c3f 100644 --- a/src/lmm.jl +++ b/src/lmm.jl @@ -225,7 +225,7 @@ function Base.show(io::IO, lmm::LMM) println(io, " Variance components:") println(io, " θ vector: ", round.(lmm.result.theta, sigdigits = 6)) - mx = hcat(Matrix{Any}(undef, lmm.covstr.tl, 1), lmm.covstr.rcnames, lmm.covstr.ct, round.(lmm.result.theta, sigdigits = 6)) + mx = hcat(Matrix{Any}(missing, lmm.covstr.tl, 1), lmm.covstr.rcnames, lmm.covstr.ct, round.(lmm.result.theta, sigdigits = 6)) for i = 1:length(lmm.covstr.random) if !isa(lmm.covstr.random[i].covtype.s, ZERO)