forked from ShrohanMohapatra/ChaosInBH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChaosSAdSplotEmptyAds2.nb
3524 lines (3472 loc) · 147 KB
/
ChaosSAdSplotEmptyAds2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 149997, 3516]
NotebookOptionsPosition[ 147011, 3458]
NotebookOutlinePosition[ 147371, 3474]
CellTagsIndexPosition[ 147328, 3471]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Needs", "[", "\"\<VariationalMethods`\>\"", "]"}]], "Input",
CellChangeTimes->{{3.767270639664074*^9,
3.767270649417906*^9}},ExpressionUUID->"4fed8461-7ba5-40b0-8b81-\
fde23b3749f9"],
Cell[BoxData[
TemplateBox[{
"EulerEquations","shdw",
"\"Symbol \\!\\(\\*RowBox[{\\\"\\\\\\\"EulerEquations\\\\\\\"\\\"}]\\) \
appears in multiple contexts \\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{\\\"\\\\\\\"VariationalMethods`\\\\\\\"\\\", \\\",\\\", \
\\\"\\\\\\\"Global`\\\\\\\"\\\"}], \\\"}\\\"}]\\); definitions in context \\!\
\\(\\*RowBox[{\\\"\\\\\\\"VariationalMethods`\\\\\\\"\\\"}]\\) may shadow or \
be shadowed by other definitions.\"",2,2,1,22619470608152234789,"Local",
"VariationalMethods`EulerEquations"},
"MessageTemplate2"]], "Message", "MSG",
CellChangeTimes->{
3.7687008824566383`*^9},ExpressionUUID->"3e6f28c8-0eab-411a-ac74-\
0d44db0190a7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"f", ",", "r", ",", "l"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"f", "[",
RowBox[{"r_", ",", "l_"}], "]"}], ":=",
RowBox[{"1", "+",
RowBox[{
RowBox[{"r", "^", "2"}], "/",
RowBox[{"l", "^", "2"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"EulerEquations", "[",
RowBox[{
RowBox[{
RowBox[{"q", "/",
RowBox[{"r", "[", "t", "]"}]}], "-",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{
RowBox[{
RowBox[{"r", "'"}], "[", "t", "]"}], "^", "2"}]}], "/",
RowBox[{"f", "[",
RowBox[{
RowBox[{"r", "[", "t", "]"}], ",", "l"}], "]"}]}], "+",
RowBox[{"f", "[",
RowBox[{
RowBox[{"r", "[", "t", "]"}], ",", "l"}], "]"}]}], "]"}]}], ",",
RowBox[{"r", "[", "t", "]"}], ",", "t"}], "]"}]}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.767270650705728*^9, 3.7672707829372272`*^9}, {
3.7673203746951513`*^9, 3.7673203780010843`*^9}, {3.76831008982024*^9,
3.768310093297399*^9}},ExpressionUUID->"282af712-f8c7-4124-8f79-\
e4343dfb8c62"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "5"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "7"], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "3"], " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}], ")"}]}], "-",
RowBox[{
SuperscriptBox["l", "6"], " ", "q", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}], " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "+",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "+",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["l", "2"], " ", "q", " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "+",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "+",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["l", "4"], " ", "q", " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "+",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "+",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox["l", "6"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}]}], ")"}],
"/",
RowBox[{"(",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox[
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"],
SuperscriptBox["l", "2"]], "-",
FractionBox[
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}],
RowBox[{
SuperscriptBox["l", "2"], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "-",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}]}]}],
")"}]}], ")"}]}], "\[Equal]", "0"}]], "Output",
CellChangeTimes->{{3.768700876966049*^9,
3.768700886311056*^9}},ExpressionUUID->"d4e252e2-fc86-4c3f-bb25-\
1280c7efde64"]
}, Open ]],
Cell[BoxData[
RowBox[{"(*", " ",
RowBox[{
"Empty", " ", "AdS", " ", "plots", " ", "for", " ", "a", " ", "neutral",
" ", "particle"}], " ", "*)"}]], "Input",
CellChangeTimes->{{3.7687013403973923`*^9,
3.76870136399538*^9}},ExpressionUUID->"9bb53d5c-9f25-4286-a161-\
c308f0ab1d5d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
"dr", ",", "f", ",", "fr", ",", "r", ",", "l", ",", "rm", ",", "pr", ",",
"t", ",", "q", ",", "qcrit"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"f", "[",
RowBox[{"r_", ",", "l_"}], "]"}], ":=",
RowBox[{"1", "+",
RowBox[{
RowBox[{"r", "^", "2"}], "/",
RowBox[{"l", "^", "2"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"rm", "[",
RowBox[{"l1_", ",", "r1_", ",", "q1_"}], "]"}], ":=",
RowBox[{"NDSolveValue", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "5"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "7"], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "3"], " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
")"}]}], "-",
RowBox[{
SuperscriptBox["l", "6"], " ", "q", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}],
" ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "+",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "+",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["l", "2"], " ", "q", " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "+",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "+",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["l", "4"], " ", "q", " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "+",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "+",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox["l", "6"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}]}],
"\[Equal]", "0"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"l", "\[Rule]", "l1"}], ",",
RowBox[{"q", "\[Rule]", "q1"}]}], "}"}]}], ",",
RowBox[{
RowBox[{"r", "[", "0", "]"}], "\[Equal]", "r1"}], ",",
RowBox[{
RowBox[{
RowBox[{"r", "'"}], "[", "0", "]"}], "\[Equal]", "0"}]}], "}"}],
",", "r", ",",
RowBox[{"{",
RowBox[{"t", ",", "0.01", ",", "20"}], "}"}], ",", " ",
RowBox[{"Method", "\[Rule]", "\"\<BDF\>\""}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"qcrit", "[",
RowBox[{"l1_", ",", "rs_"}], "]"}], ":=",
RowBox[{"rs", " ",
RowBox[{"Sqrt", "[",
RowBox[{"f", "[",
RowBox[{"rs", ",", "l1"}], "]"}], "]"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"fr", "[",
RowBox[{"l1_", ",", "r1_", ",", "t1_", ",", "q1_"}], "]"}], ":=",
RowBox[{
RowBox[{"rm", "[",
RowBox[{"l1", ",", "r1", ",", "q1"}], "]"}], "[", "t1", "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"dr", "[",
RowBox[{"l1_", ",", "r1_", ",", "t1_", ",", "q1_"}], "]"}], ":=",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{
RowBox[{"rm", "[",
RowBox[{"l1", ",", "r1", ",", "q1"}], "]"}], "[", "t", "]"}], ",",
"t"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "t1"}], "}"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"pr", "[",
RowBox[{"l1_", ",", "r1_", ",", "t1_", ",", "q1_"}], "]"}], ":=",
RowBox[{
RowBox[{"dr", "[",
RowBox[{"l1", ",", "r1", ",", "t1", ",", "q1"}], "]"}], "/",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{
RowBox[{"dr", "[",
RowBox[{"l1", ",", "r1", ",", "t1", ",", "q1"}], "]"}], "^",
"2"}]}],
RowBox[{"f", "[",
RowBox[{
RowBox[{"fr", "[",
RowBox[{"l1", ",", "r1", ",", "t1", ",", "q1"}], "]"}], ",",
"l1"}], "]"}]}], "+",
RowBox[{
RowBox[{"f", "[",
RowBox[{
RowBox[{"fr", "[",
RowBox[{"l1", ",", "r1", ",", "t1", ",", "q1"}], "]"}], ",",
"l1"}], "]"}], "^", "3"}]}], "]"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"fr", "[",
RowBox[{"1", ",", "0.1", ",", "i", ",", "0"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "]"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"pr", "[",
RowBox[{"1", ",", "0.1", ",", "i", ",", "0"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "]"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"fr", "[",
RowBox[{"1", ",", "0.1", ",", "i", ",", "0"}], "]"}], ",",
RowBox[{"pr", "[",
RowBox[{"1", ",", "0.1", ",", "i", ",", "0"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "]"}], "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.767312209844882*^9, 3.767312340520702*^9}, {
3.7673124378512163`*^9, 3.7673124554655313`*^9}, {3.7673125707273684`*^9,
3.7673126399916058`*^9}, {3.767312769309531*^9, 3.767312805320653*^9}, {
3.767320504894402*^9, 3.767320512981186*^9}, {3.7673210578528748`*^9,
3.7673210707616653`*^9}, {3.768310352784792*^9, 3.7683104339850683`*^9}, {
3.768311028362908*^9, 3.76831109800974*^9}, {3.7683111568126287`*^9,
3.768311204751115*^9}, 3.768311296747654*^9, {3.768311509327753*^9,
3.768311542426857*^9}, {3.768311600654581*^9, 3.76831161695198*^9}, {
3.768311648403689*^9, 3.768311679286167*^9}, {3.768311764744543*^9,
3.768311777785918*^9}, {3.768361415370034*^9, 3.768361422998171*^9}, {
3.768361575595442*^9, 3.768361580339018*^9}, {3.768361610616737*^9,
3.7683616112741337`*^9}, {3.768361732661661*^9, 3.768361771168947*^9}, {
3.768361813007997*^9, 3.768361835811536*^9}, {3.7683619239755163`*^9,
3.76836193253188*^9}, {3.768361972115326*^9, 3.768361989684258*^9}, {
3.768362858901045*^9, 3.768362871627108*^9}, {3.768362921621622*^9,
3.768362941616274*^9}, {3.768362974694656*^9, 3.768362993091178*^9}, {
3.768363036219797*^9, 3.768363048217939*^9}, {3.7683631176459103`*^9,
3.7683631209550467`*^9}, {3.768363272042679*^9, 3.7683632758598022`*^9}, {
3.7683639870538397`*^9, 3.768364003644075*^9}, {3.768364566951529*^9,
3.7683645718247757`*^9}, 3.768371863034245*^9, {3.768372291907099*^9,
3.7683722932402153`*^9}, 3.768700920848485*^9, {3.768700969752798*^9,
3.768701013474732*^9}},ExpressionUUID->"3753094a-4621-451e-a4cc-\
5ee1a09e0526"],
Cell[CellGroupData[{
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.011111111111111112`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw12Hk8VPv/wHFLhCh7yb6MGWMwS0kp512EtCBaidS3IpWlkFIqhFy7myVX
hFD2mTEzLUb7cuuHujctbpFKpUWylFQ/nPf81cNhno/XvGf6fM75GG8JWb1N
RkpKKkNaSmri34OatS7dB+KJQBe7Lqd8ESEySOjzFNYS6enrEutTRYSFb/rV
IdolYt3WOTvyw0REzOTfXycczBhv1JeKiJcHJi7cJYZK/hXaK4iIstBFSh2l
bYSDZwLT4aKQeFw6ceEh8eEYY9DdT0hM65i8QIyFPrZv+CIgHJQmLjwllnR5
Xa6OEBBhEy8P/Y/o5+zMyn3fRKwWTgR1EUPTeK1tHk3EB8+JC92E48J5ulcq
+cTxvokLPUT/rlznpwM8wnAi3+A1cdT71X8nbXj4ft4QvJRmXrQ/F723xCx3
rT0qcY3ovSNalitPf1XQgF4fwdzbkXCyoh69j0RJ4l2/JK869D4RrKrjFWZO
NTiffuIe4/82rjM5TwzTJi70E8U7f/TFfq4krg1NXPhC7DJuapevOUtkXJ24
MEDUdKQKfH3LiE0TL/f9StSFXzn2/VcJeoOE6ve1MgLGafQGiYKgPI6KawF6
Q8SnGe9fynv9id4wsUIrV+eyRwZ6I8RvxbGuoqTj6H0j0nOntiVe24/eN6Jw
S/TAjXxP9L4TZ4wyBFcGQsSkN0o4G3orl1GPiUnvB3HkccdyT5c/xKQ3RlRW
RZg00bPFpDdGKEVL33xMyROT3k/CJEc2alDtL/R+Efzg+ZzRoWL0fhNJu5/B
9vWl4smvk6YUeDeJsi7XlovJ76MUZFGTdiSMVIi7J79fUlCyV7Z1Geuc2GXy
gjQ05rXWF22sFk++vFYaKM8uZBuF16InAwelwm8ssK9HTwacdjGMqZwG9GTg
TjI3gGPUKHadvCALTMaDm9ekuejJQt0mc3Ds4KI3BYymLeg2LeahNwWo6Yu2
v/DhozcFlJ47nh5RbEJPDvxFh/qHq5rQk4OrK6vqQ+0F6MlDaYBLuXSzAD15
iNhO9fNgCdGTh43zt8eq/ClEbyqw1+kvGXwrRG8qjP37JOkuQ4SeAni8nmoX
sFmEngJY/LqXkBMnQk8BntiGPlp+UoSeImwv/0I/kCdCTxHMU/hTDU5IPCUg
BHHei4MlnhLMV+2u+24v8ZSgaOR7/44xSd80qCrMZAmrJX3TwBmqrxmvFKKn
DE9m3s5685/k/SqDkjKL8PIXoKcMq5xjS5vbJfNTgTenTmxMniuZnwqwbatr
9VP46E2HtLV9Lz89kHwe0yG7p//NfhUeetOB8nDJd8Kei94MeOuy/merbyN6
M2C+Yxb7UniDeHL5UVKFR2MW5UWH6sWTy88iVSAOPfK1GasVk+uRKkToRs48
9a5aTK5vqkA3Uq/quH5OTC5nqrDTNkfPOb0SPTWo/fPxBg+3s+ipwTQR1zNw
pBQ9NXBbMKY2Na8EPTWwW1zUvM6nCD01YBSVyQj25qOnDl2BvhkOMTnoqcNz
99Gtav1p6KmD6wVFbvA/8eipQ8rIMbXz6yLQU4fQooHdf1Nt0NMAYr467862
vbj+akD5walyWzvjcP3VgP33H61N+Z6K67kGFJzoS1SUySFITwMO3jZb1jma
R5CeJhQ1t3wxefUXeppQ9fCXwrZNJehpwq7tN0/2XC5FTxM4h8dWq6ifRU8T
1lcGHQhcX4meFgh0mYeOpZ9DTwuq0rsT+/nV6GnBPw3uLR53a9HTgpc5XyPK
t9WjpwUelDlXb/s0oKcN95M3rf3i3IieNvR7+R+ON+eipw0fXbX8Pn3noqcN
X3bVLz7TwkNPG85brHbQPcBHbyZcLYxK6aQ0oTcTqk+PKoVfa0JvJrS6LSsL
XS1AbyZ0yPo3RT4QoDcTsrbkxzIchejNAm9awy6nMiF6s+CFZ/jOg0NC9GaB
hXk85NtK9tdZcLn548XQHSL0ZkHqq6AnLxJF6OmAquJGhbZcEXo6MP1bMtt2
/GfS04Fpa7oE6sclng7E2Wmmhv1P4ulAGrfHYidb4s0Gt+YQd8N+Sd9s8Ems
+N38l6RvNhQadK4+Zi9EbzbYB/E0a+5I3u9sWOu4IzPVVYCeLqyJ43nHCCXz
04WKzvDaZzqS+elCjMvhDTN389HThWiGpXlZo+Tz0AUf2X8ifr/noqcHq+8m
3arV5qKnBw1Pxzc320b09GB7Y8+hpW4N6OnBCePRYF8vyfdFD4Z/lEstL6tF
Tx+c5tHvpKdVo6cPrVeNdbu2n0NPHzy9QtKLrCvR0wcHJ8to295y9PQhoHT3
VN2sUvQMwNRqwY6bzBL0DOAxm9oUlvwXegYwfMHp1eeiPPQMwN/kaqJueTZ6
BmArSLph6JCKniHkEp6XOg3j0DOE0wtXLw3rC0PPEFqsKPyLpx1xPTCEJblb
dz5tj8T1wBA0XDJk72QkiCdvb+SMwCFLtIs4ny4m73eMwE/btUH2SY548nbJ
zgiom6z8Q1vzxeT9kxG8LSyTu8cvEk/ePwUbwZHaQadj10tIL8EIRI/3FCiY
lpFekRGYG/82GN13lvSERhAXxXF5LqwkvXYjuDs246zjx3Ok12cEg6ELfrao
1mCfMXRcUX88ZFyHfcbQs2J2/430euwzhu6KV5W68Q3YZwxew0nzfHc3Yp8x
1FpZSX1y42KfMdyMWLTaQY+HfcaQpfTHtStdPOwzBm7BzYuDuXzsM4Yt8xx6
fBY3YZ8xqHUvzIrvbMI+Ezia/NZFLkiAfSbQKFSVPfxGgH0mYH6RVp3nLcQ+
Ewhpb45U5AqxzwQ03aYbpUuLsM8Efu1/YveVEGGfCfxX5RWltEeEfSZQ5ex+
m5ciwj4TWDFrMPK/8f2c7DMB7obegIN/oidnCm179HszjqJnYAq+LYnPLDeJ
xJP3s3amYBbqVLyNhp6nKdxLu/JxS4+kzxS2rzyc75UmxD5T0CpVSwq3EGKf
KfxzbpW/HF9AekJTaF5vZ+LLEmCfKTwNlv/dViSZ33hPyN3Pt37ysc8MEi5F
Lahdxcc+M+jmdhuOZvKwzwxOXvINod/mYp8Z7BibOXbji+TzNYOLppVzfWY0
Yp8ZyMYMNcYaN2CfGQyc2X6ulVaPfWYw5lHz6+nyWuwzAyuP3kwZTjX2mUGu
a0BlqMI57KOAO89ya/L9CuyjQElZabQorhz7KBC2bL1XBKMU+yiwdu5vjt2d
YuyjAEEsq5QXFGIfBa4KVupfuJOLfRSQX9q7rPh+FvZRIGraEavzKSnYR4Hr
2b5O33YexT4KOOY6v279uQv7zKHrsl1qfPw6fF4xB6H64qy4RQfI5xU7c5jS
/T3svlMiPv+YQ3X+XBd2bQb5/BNsDj8/qV88XfcnQfaNvz5Gpz+9tID0isxB
u9x74/vjp/H5xxzefZhKd7c8Q3rt5jDnk+PeB4ll+DxlDl+DZQyPdpwlPTkq
8Ovl2ntmVWEfFThtnptOuJ3HPipo/lb/rRxcg31UGKoZ6VCOrsM+KqyqCKoo
ENVj3/jvNx92M6huwD4qyCg7RIVnN2IfFXJfBlz4tQef99qpkFmflsJy4GEf
FV518FqPSPGxjwZDjtuW7uTzsY8GEWkJ8vt8m7CPBs6Lot4zhiTPozQYUxyT
sYoVYB8NZncFDWuNCrCPBvan6X7Z24TYR4OA7IsMnytC7KPB64vMQSsVEfbR
4HrBgG6Hqwj7aGCxjDPXap8I+ywg9F9TQ/V0EfZZQPZSO7W9kud1OwvYL8Nq
c81Gz9MCXGJ4vNwY9IItoNhseXzIGvQSLMD+X9XYPn30iizA9Fe7G/uRpM8C
nPf6F0UcFmKfBWhqyJsPaAuxzwKy9u71+nwa368cHa63Vr5r1hFgHx2u9cqK
LsVL5keH6Vof1q7q5mMfHWhmH/Ne2vCxjw6H9L8zv4TysI8OKdohHqNlXOyj
w5tqluHxe5LPlw5pLZ5Lzd42YB8dCjq1YoO/1WMfHdjDWTYDP+qwzxK4bdrP
uwZqsM8S2uPZSkOPJN8/SzhmWfTtRFUV9lnCt4H7bgq7KrDPElTTl2g/MyzH
PksI3J8wvP/mGeyzhPfzrBf5BRRjnyWopTqbz351CvssIdTedr7O4Enss4RR
r+vhbUOZ2MeA1W/1b114nIx9DNh4ZoV1SnAs9jFg3c0lG+zNtmPf+O+rzWw3
F27B9YUBH1LyE5oqD+H6wgDbUEIj6FsSri8M0MpTEkQfz8T1hQFecbMUniac
xPWFAXO0Lm2YF3UK1xcGsIpZlpcti3F9sYJo78EPdzLP4PpnBS/nZPsSH8pw
/bMC7VUXsornV+D6ZwWxJU5bo/ZXYZ8VOBxZM+BdcR77rGCh6sfPD67XYJ8V
GAXaUHNa67DPCg7VXXxm0lOPfVZw2z+8r/VhA/ZZweKRKTs4Ilzv5axB63u8
fFMWF/uswdXvfcgtf8n+YQ1JtxM6nhvifu45/vtDR9cffMDHPmtI0/8j1iwK
9/MEa5hzbrhypwru50XWkPtucXRvjmR/s4auXZ/AQQX383ZreMP09dCLxP2y
zxp+2K1ZP78V90s5G+BGJ4nXzZLsvzbg1+L6t5OnZP+1gapHr988jpbsvzZw
gf78xUgm7ufBNtC6eWF3Rr7k/sAG3n6IPVmUIbk/sIG+B41u1Cj0hDbwKX7m
hYUrJfcHNqD/lS4/pi65P7CBNr07Tam3heR5jQwTqnrtAil7hOR5zQwm7MmO
yJSeIiTPa/SYcMMu/H/BJwRi+uT5DxOS5wRsa5IWkOc/c5mw7xFVEXY2kd4S
Jvjvvx8Zcp1Peu5M8JjDVeOr8vH8hwmdlv/8THbnkV4gE5pLqm6FHOWSXgQT
VC796P18tpH0jjGhzOKEw6mWBjxPYsIzOrNSsbWe9AqZUJHaLs0tryO9SiZ4
axQ4+eXXkB6fCaN3w3oCD5zH8ykmbN2YeovpVkV6rUxYxDdW1leqIL1OJiT4
Der9dbGM9N4y4bb8wA3q5jN43sUEw/PLmvcNnMb5sWDFkaCvdaqncH4s+BnZ
L6NmcBLnx4KHfQUddfqZOD8WOFyeSaylJOH8WOP/X6Jf5EnF4PxYUNhJOZKY
44fzY4Gd2OapRWQQnu+xoOb+m88NyUcIcn4sOBs0sCjn/AnyfC+CBR4PfW3D
/bLI871jLAhK47XX+uTieSEL5hQUPN/iVkh6hSzQuGRhdim7mPQqWTB/XcCl
/pEzpMdnwT57gz9WepTjeSELQnqlRWtPVZBeKwuUkrKcczuqSK+TBbJp/YIS
2WrSe8uC0ZXvbNQMavH8kQXx9NRZN9TrSU+GDT/XaPy9SbmB9GawgeFDbbP5
0UB6emzIBsK76Hkj6dHYQFmrt0CjiUt6c9lQp2rp9/sIj/SWsOHNizHHZw58
0nNnw+IHkYHUz3ycHxsCA1vu7cpswvmxYeRq29pFFAHOb/zvKwvH1wABzo8N
SpFzE4YNhTg/NrhdqGdyjgtxfmyQDbjGL+0U4vzYsMA4ZoWyqQjnx4ZB1ie9
hRtEOD823FdfF6YSK8L5sWGgvfDXthwRzm/872M299qO7+/k/Nig47nlWkwq
ekNsWBHufosIQ0+GA490BBXZTujN4ICVgv7u3Kno6XHgp0/Z/ogL2EfjwNIn
UW5bNwmJkcn5cUCq9x2tpB/f7xIODMc4/47eJ8D5cSCDpj/d8V0Tzo8DeQe6
w3zcJfPjwDK32OeWFXzSi+DA/TnbHMy/4OdxjAOjC/m0G1Y8nB8HItWTjqZs
4uL8OCAX1j1tylH8fCs5QNu6+XlLXgPp8Tlw1Mf068Zy/L5c5YCId2Brz6o6
nB8HHASvHnkTNTg/DthSft331z+P8+NA7JUDrVvfV5LeEAdem77YeafiLPH/
sYvcGQ==
"]]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0., 0.},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 19.960000000000004`}, {-0.0999994802372186,
0.09999770327001149}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.7687009282955008`*^9, 3.7687009784243793`*^9,
3.768701015658869*^9},ExpressionUUID->"d3156020-4ee0-40e0-8fec-\
21892bf74224"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.011111111111111112`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw12Hk8VPsbwHFbRCWE7Ntgxj4LRdF5UlFRLrc9Ku1KxZUW8SPFTSpkKCJr
sjPGbJUmWmi7kXZSKUnWinJT1w/nmb96OWPefeaZ8/p+j6/x5n0+22SkpKQS
paWkxv89ol7u/i7sOFH1uZC9e9kfYpFBTLe3sJzw92r96RV0SGzhm1A3RLtG
xLsqTpLaGCsOn/j9W8To1yZ3LedEcXvY+IV7hJhSvVg0L0WcH+Si9DyvkTC+
vfiOkn26+EXe+IVmYvWbJ5u/aWWJpzyfuECs8XFmLhzKEc9TGr/wikhorc5v
8ckXB4+/Peg1sVa6NLw2r0DsIxwPeks8Wys99cjHQnGP9/iFd4ShaVDIee0S
cWz3+IX3xHED5fqyuWViw/F8gw4iw2wNZ6NHBX6ej0TmlqiIsrxK9D4RPf52
D2jnOOh1Ebmyx+KORlah100oHNxGNfTlotdLaAq/deyzrkavj3jwxud9Z381
zmeAcNFX8Z9UwBN/p41fGCCOsnSfeC7ni28OjV/4QoiqXxkv+8QXJ9aNX/hK
rKL252eGCMR+42/3/UbomJ23ausXoDdI9Nz+J+SKrxC9QWLdfBB3ioToDRHR
Dk8fUxRE6H0nVrcvHnZeKELvB7GlKua+bLAIvWFi3ZNFKzeeFqE3TCj+z8/b
IU2E3r9ERU9m3zG2xPtJZGzLX7ckUuKNEDPuvexIXSvxfhG5v0NiYygS7xdR
t60me+5rSd9voqHTeFZXrBC9/wh2pZnPPSMheqNERuCNPLMSgXjidlKXgqSP
NVYe5gIxeT9KQfOek6GpZ/nidxP319jrKgrMwAGe2H3igjRQrjz74gg88cTb
y6Vh6Lffp9DoavRk4JNySk62gIueDPyuLfsBb6vQkwHfhIXqnb844sUTF2Th
vpwomqrMQU8WlhiOmGerV6InB/Njz+t1GpejJwfOzeUP2Aql6MlBhWf0nvyW
IvQmgUPDw5VHsi6jNwliIn1en1hxCT15uOEsnO7yKxc9eUiMCp2ncz4bPXlw
fe30r/OfGegpgOnWvSsubD2HngKk0Rx8D+84i95kkDM8N8CrOYneZDA651/5
7kIUepPBIGpe0wpxAHqK8KuSrdEts4EgPUXYGGlPn9t6hCA9JYiYv/+p44wT
BOkpgXLp7Ds16kkE6SnBmew+LxuNVIL0psAfzF/aAwoX0JsCixu8H7/uykJv
KtCmZT3sWZ+L3lS4GyQqiRTkozcVfGplUrXlL6M3DWbLrji1xK0IvWmQGOJn
WHCgBD1lWBCTxr+aUoaeMpwIkxfOyq1ATxnufr5waePDSvSmw2fL9mtyYg56
0+F4dfPWfZeqiInlR0kFPlSYSU+K4hITy4+LCsjIvs50WF5NkOuRCrxq6+05
OJ1HkOubClwLmfZtyU0eQS5nKrB25YpyZgAfPVWoXZS1pVZKgJ4qXFt3UTox
ToCeKui47QokZIXoqQKX37cjYo8QPVXwDcwdlmoQoqcGTa0PM+PUROipwamS
bEqnpwg9NXh5c6tN7wERempQcedfm+hEEXpqoFj1sCopTYTeDPgxS+u25lkR
Qa6/M8CG/jxUM0zizYA9M/8qzPaWeGM/v2hkP9aSeDOAsleV+/iRpE8dhF/b
hpsPCNFTh8t/1eioKwvRU4cr8+exX6UI0FOHpk0qkWHKAvTUwfFZ6tI/Dknm
pwFxsyZ51Dbz0NOA4yv2GBLGPPQ04M1fRo3z/KvR0wAnmT+DFrG56GmA/PZW
x+dXJN+vJigahMWfeMpBTxOa9m5L6P1QiZ4m2Bs1Kno2V6CnCcEuX54WNZSh
pwnbjAT1i0tK0JsJfgy+V0x4EXozwS5wqfi2y2X0ZoLPX9tNjwzkozcTtH3Z
rVqpuejNhK6W7vO69Gz0tGCjStcFtagL6GlBv6tZ3KMzqehpgWnSs96IhCT0
tKA2sGYwUSkOPS1Q++VcRDyMQE8bdAa0vAM6NqOnDR3rZ350bdmG+6s26Ac0
uaq5R+J+rQ3db7/vz74TJyY9bVA9tjDlZU+SmPR0oCT1ZbRDdyru1zrQ2T9n
+eqWC+jpwLStqw3V/LLR04GVA2+KoS4XPR149itM9aruJfR0AW5E8+V3XkZP
F47EMH4UXCpCTxeoFTqN9OYS9HThyVNPTdf+MvR0wYrxu/XQcAV6ehAcf1S5
7nslenpQEWHVm/CRg54erDad7qxwvwo9PRiOPuuWlMdFTw9qD93subivGj19
+Gjx9dhlWx56+nDG6dQUq7c89PSBbV7L5xzjo6cPjzunbX6gJUBPHzZWbTHX
zBKgZwD6ZTGfmZpC9AwgakR5SWOEED0DWH7ieNnlp0L0DKBSixYari9CzwAU
2uYW664UoWcInya3bfEPF6FnCB79Z/62TRahZwjskdYTB8f2d9IzhFv3g++y
EiSeIdzwqvm0Z79IPPF4M8kIvN2V1WctEeHzjhHcS3USl0wTiScelxyNoO/7
aOqPWiE+PxmBfHm1zfLtQvL5abcRyBVtP9/3U0B6MUaQlHRyNSVKQHoXjUA3
IGc+8Z1PekIjiFCPF+b68UmvyQg8Wve9qeLz8HnMCGjHlP94L83DPmM4H3Wt
t4Soxj5jcF9/vSAhiIt9Y6+3rGVop1RhnzFsdycmvSjD57vdxmDr21S942ol
9hlDsjFrSn14BfYZw2Dvnwqde8uwzxhufXDwjFpegn3GUDywMHZQrwj7jEGT
5qNW1FKAfSZQ116pMP1UPvaZQFY3tz7LLhf7TOCW3SmH0oQs7DMB+mbGv7tK
07HPBM663jueIkzBPhN4GbxribMgEftMINJRc8G3VX9jnwmUzEiCUf8w7DMB
F6l3Ph8112CfCdiWOVS8rQ4kyD4KfLiS3tSw5ihB9lHANf7u6fjD8cTE86wj
BcLM48qKb50lyD4KOJcvu9924xxB9lHAQOqN8qLyDNKLoYBq4R393lvZpHeR
AieZ2QnzaXmkJ6SA7E5iVkbkJdJrokCaCi8t7u5l0uumQO9Of0aSXDH2mYLH
0vpkV7tS7DOFmdSc0XmLy7HPFO6m7pqjQa3EPlOoCcq/+MKQg32mUCederVh
WhX2mcL3m9Z/LBmowj5TmHOFU3XzDhf7xn7/rlilOLEa+0zh6rVze0OX8bDP
FOxlb70q+MXDPjN4uj5wY0MmH/vM4KiyvFIgXYB9ZmBiPxpiWy3APjPw7dO+
yaMJsc8M2sJUP1WeFmKfGcz/HVTyql2IfWbQvK3u4L9UEfaZQYDbhfRXviLs
M4PDAzFH/Y6KsM8M5IdmqmxNEWGfObiF377x4bwI+8wh+pBvxct49BzNgZn4
XGP5XvS8zWHpZP/YlYDebnNgT5eRUpFBL2bM+xSkU8SV9JnDFd7enFUrhdhn
Dgb5/PK1nfh5m8zBJagm5b8AAfaZQ/ct8de013zso8KKbVcsTrtK5kcF7pH1
XpDGwz4qeGw+v8G8Hb8Pbyqs+cfN76p+NfZRgSq7qTLKk4t9VDj8IVZ90j7J
90uFxavYms9jONhHBbearYnsJLxfmqjw68phV65ZBfZRwfNlUFimehn20aAx
d8/PuV+KsY8Gb1TP1A5cK8Q+Ghzbfi7B9HAB9tEguGDuqBs1H/tosMvIo6y5
IQf7aFDf1t2SdP0i9tHgAadl//IXadhHg+PdGQPD79jYR4NlcfGDa2oSsI8G
D9VGNgzmxmCfBaRZW75b9v0A9lmA4tHNJjG3FmKfBVSlrtj/5U4wri8WsDvl
ai932jFcXyzgP+M5B+WtT+P6YgF06V1mZhnJuL5YwGDXiLx26nn8+9YCoreW
OvCjMnF9sYC5mzaMHrHOwfXFAir7baQ/n87D9c8SnhvPXqD//hKuf5aQr8qu
ybYsJD1HS9jR4flOdksx9lnCj003fJ6cLMU+S8hTWmFflV2OfZYQXHT2eZ53
JfZZwpD8UkH2Yg72WYLfGtqHcntc75ssYbZFCt1eg4t9luBBPBhJ7+JinxWI
5IZXreJI9g8reLj5+su3u3nYZwXBdoYt17RwP/K2goCd536HCvjYZwUlX479
ynKX7G9W4HLw94kXDZL9zQrU/FZ8rJ8jxD4raGxTUTTMxP2yyQpWheTEp/Xj
ftltBT8chx9KMSX7rzXU+EobUbZK9l9raFC0l2uPEWGfNdT/SJtqck6EfdZg
kV+q92rsZ7LPGtw400wmn0AvxhqmR/2zVrADvYvWYJ9e9/m/WegJx/yTrCOj
Q5K+Ma882b0zX9JnDcHqvrm9C4TYZwM8mit7ZTN+XgMbCLeLfR/4pwD7bMBF
Ri395C3J/GygRmSwQYUqmZ8N1Fcm1Accwf08xgZC+C5KinX4fVy0gZ+tHV17
RrjYZwONDRFztGlc7LMB6nMvSsbiKuyzAWuvU/axfhzsswW34YN/h+7A+8XA
FpJXHt6u+k859tmCVGFPwSNRKfbZQnjj4I6I5GLss4UOD/m74b6F2GcLcxh+
3U6aBdhnC8XeU+mmdXnYZwtKkfH/E/jnYJ8tPNFt9+7uycQ+WxB+4x69LpuG
fXZw4Htf8qgSG/vswDMl3O7SlDPYZwfpC5NnpPYdwz47mBV4P9H5ZAj22cG+
L3du3k2xxPXFDmxeTx02YoXi+mIHMr7+IwvrjuP6YgfrpZJ3SbedwfXFDtI6
qFz3EDauL3bAKSv1aN+VRkyc18jQYZJc7f1cn4vExHnNdDpsLWvuqknOISbO
a/ToEK54Ut/pWx5hOXH+Q4f9z7jKc90KiInzHwc6KAQd0POILyQ9VzqkfrRX
+u9GMel50SEga+T5+45S0vOlw/QE4eH04XLS2zn2/k55QeeRStILpYNPpGm8
djCH9KLpoCzjUD5/fRXpJdDhgYave70Tl/Qy6PBGoT5Cc2o16RXSoUV+kWZe
UzXp8ehAlWY5dMXxSK+ODpSgoBOB9nzSe0SHx9vrTK408kmvlQ6zR26KdmwQ
kN4nOoiTLGXVXwtIb4gON2MvaQd4CnF+DGg4peamUyrE+TFAS8NK98OIEOfH
gLTaGaZn54pwfgxIHHLUGtolwvkxQP3HOpn+OBHOjwGLqNydO8f2c3J+DPAJ
ptWtThXh/Big5NxKER9DbycD3HWOdxRtQi+UASzRVn+mDXrRDHi+7nFIWBf2
JTDA1KntQFUK9mUwgBvRemoGU4jzYwBFs7ug/Tp+Xh4DEuJmX9/rLMD5MWBT
GZutWiKZHwN0fQ//sJ4imR8DRtWu3rbz4+H8GMDxfKdxKge/jyEGvC9Sm33r
BRfnxwTnr1TpdbJcnB8T9tteMXljXIXzY8Kpwe4PHfYcnB8T5GJqQ6e44P3i
wIRnRxcMtoeW4/yY8LPuEyVyQynOjwmf+p3obg7FOD8mPHnPO5M+chnnxwT/
36ENn6su4fyY8L87gYxC3zycHxNmWfa7LvuZjfNjAjeYSL+mk4nzY4KTesvv
GtvzOD8mSC+df7yMlYzzG/v/Mq+F71x7Cuc35nnbE6+donF+Y58vk3XjlX4Q
zo8J0a72bYUK3mJyfkzIWZ559vvFQ3jeygRhyqPe/QdiyfNWGRaE3wt2FLon
kuet01lg/F0lVmVpCnneqseCwRbantlEOunRWMDueZoyyTRL/GNifmOvB3ve
5vzMIT1XFjA5OSE2a/JJz4sF3/6es/FbYQGe37JAnrVf4+/uQtLbyYJZSsEr
/2dQQnqhLKA7LXDbB2WkF82C5ct2vRryqsDzYBakt1c4vL1USXoZLPiqpPKn
axqH9ApZ8FZ2JkQdrSI9Hgv6rJYMS2/g4vkyC/7aoJDsYFtNeo9YYOOwj5vw
pZr0WlnQ0BLRd/oyD+fHAkKhZzvPi096QyyYHF0byO7ii/8PqVrkOQ==
"]]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0., 0.},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 19.960000000000004`}, {-0.09999796954524093,
0.09999952903098842}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.7687009282955008`*^9, 3.7687009784243793`*^9,
3.7687010233116083`*^9},ExpressionUUID->"64aebb7b-267a-4018-ac86-\
eab582eab6da"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.011111111111111112`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwVl3c01+/7x40iKqFoSkIUyo6MqxBCmVFZaShSVkiRLZK9Ze/tvd+vl3Wh
QX3yRUtF2qkUkpWRn99f97nOfe5zn3OP5+NxSZzxtDrPxcHBkcTJwfH/40Uj
jfcG2STQflSmXTpqgYmJdrco8SS4mA/OmXtdQ7uzqheyvUmI0+NbyeEcjbpS
8l+FD5OwNNFntEk7CaeKXhBaq0hASYYxqZuOupZRirpNBEg8MH7Ir5qDP8Pl
J82dCLB79/zMn00FuOD1Sov6mw0nrLSVDaaKUO+9dUutHxsSBxmlA1alOK7i
npL5gwUnOWuD2kvKcWo1o6fXggUvT3KuufG1EvW1929tr2SCuJSXb9bmGhz3
yDR8M8GAyO0CnXVadRhm8/ltxj4G5EqfoDqbNiAjrpUR6EyHvLOhwXUlFNxk
LnJlbQQNfrrseyKbScU20zUCn3OoUMwdERsWQkNF3/6ojAoK8AaclxF3oGPR
rcdOMdYNIEr8+eIpz0ClqugKKYM6ePLO6tPwGAOfyP/vlN3OGtARE3RZWc7E
Qvf5kZCxSghT2frc7BgLPSRYfTx15UAy3kgc/cbCuv54toNDKdjKjJXm+bKx
wac9/O+/ItginSU3NMZGwb+2XGz5Avj54H++jQ4E5rhlqaw1zoFThw7iMEng
6LofH3ms0yFc7cVTSV4SzUQyN7dYJIHdR+NZbQMSl/gW3ufHRMNZWtR/3N4k
Jmby9t66dw1OPT983DmexNwzgRMPsi2B76ajpVo2icU7ktjtE57Y8DNvNCKN
RENxmzWlMuGYe7701JEQEkNf9ZtaGt3B9Y9ff8k4SWJlld9O1p5ULF70jY6S
JJE/kPPhK+ks7DjfUqj1lsCdadwBk0J52DUsof49mkDmJU2VualCTKNIWz3e
QWDM5YGDridKMNejrUS6ho02LDKlpb4Mk7+2yJnuYmOKTMyFqJkKfHb5tl9G
CguLfLl7jihVY7Igr7LHOBNpWT2U/FO1KNn48rfGQSZKDzSm7vCpx6lFx29+
4Qy8weHz4IAWBb8JpBcVsulo4CEvIaNCxcX2upmD72n4KJbuorKDhg6JBhuG
F6ioKP/04T1OOv63ggyXEaBig+Oug/r9dDwiPr+rcAMFd6w+8EGykIGHorO2
DUvUo0yijus7eyZqP6t/ksZbi/xD+gUzfCxsMAu/XDpQhc5k8Ph0FQvVurqP
3yiowI6jVRQvLTZGhVi9jbEpwxIXozLOVja2aRPrdBaK0c9VxslCicCkUD/d
LVmFeErTNWRtOoF6bzX/alvnorKdmN7kNwKlzl2xuXsuExdevI55LE9itqya
Q+CFFLT4wqvhcprEFeKZ48yW27j735OotAgSd2S6UD7cDcXX6l4vTTNI3B6q
22eDbuha9nvP9SwSFyhpIiNcTrArjsm7/TaJziGqilqDNwDYETaHLpEYfOjq
C431MaAp+KHhrxaJArX7H7ZsSIb8mb/jFxYITCgcNVcQyYCq3GQlopZAC+WF
zeO8d8HwYO09iaMEGndZPn37vQBeb+xK+fqWjbJrC7p/2hcD/xolsHZm4yMv
siaEXQrHDENKWvtYaNXOlbGZpwK+3r19KlaNhfu5be4cMawCZfXaerE4Jib5
OoqX+9dAgu3Ix9GnDNSPymY1pddB6qfxr9fWMjDmOg+hXtwA0s/0/oIWHR/9
uFvm3E2Bb0YnFnscaPhjz8fmFUgFTf0U5WYfKkYynp3zLKPBy4XdZfnBFPzc
IM25MpQOEPzSYd9CPXJxv81TO8YAv63+G+9+r8U3Q79+Bqxjwp4dwlX996ux
2XftnyP3mOCunrbNMLESTx63qVd2Y0F9+quTFibl2H644Gw7BxtWk3TLizMl
2HwqnzMplg0mBxaEeLOKcIuhuwdwE6BxKL/Vzj4f6azRC8GXCZDPL+Vi+2aj
g0fxLEcXAe8vOiTpBqVh32B3XqwwCUPmc2eFxhPwTk2h5LAZCcaNfPRLzyPx
9b1zCr/8l3N6Jlyoxs4PGx7+VQhPIsErf+LyfzL7kI/WTUteznnQFGY8Ou8L
M+qbHoimkFB2g3fl2cEIUFDs9xO9TsK17pe2cX/j4fJGn8pCSxJybo/c4uNK
g8uvetOebiLhRpfUkcG5LJC8IkR/2kNAfmvb752f84CYGJp95k9A1bN/q847
FkGFT8uWDQIEeLg+zPjUUgKNh3TT3qSzQeXmgtVa4XLoOy0Ycl1gmQOVbtcv
nqgEjZcZJhbXWMDeqhgcnlgNseorTdufMaEq8cOtcWYtRNpcFgcJJjynmrdZ
PK6Hdz47enVdGPAx7Y9f2XkKaHJZex1Oo4OFtGpHlz0VeFwHNfobadAd62j7
25AGfNuvx8W8oMK4tfPNyF106LtyPvHXZwr8MhZxGv1LB9UdvXxmzxrgtwfl
UHEbA7x1fr+o6qqDmt1WuluvM+H8DnancU0NdOQGxA1Ks8BRiWUeFVQFtQVz
/D73WLDPwwQf6FRAj8mRUi8rNlj5uErdGC+Ffm5nlv9TNmx2SBvclFEMKWey
Q+T1Cfg+MJK1VbEQbGSpHgalBDgLfr8rHHoX3ln6uN+YImBMTzq2JyEDdu+K
PJitToJU8stfwYnJ0NL6q8nrAgntHi2TSfyxEP/Z7fW7WyQIL2hXQXcwCPKd
WtWbScKW8U2Wbl/OgMBsrLL6cv3FfuNXvYHzuPr4e7ZwNAlibn16wkYhGKGx
Id77HAkj76evFj6MxQT6p93uyiQIRRikv/6ZjCatnubi4wTUZLwOVxvJQPtb
FUuteQQMjx04ZjdwF3O3D1qFaxGw9pyduLBjIWq5MTbUPWLD8fF31Qc7itFW
/0JyvDF7+Z9dF2raWobHIxg2QQQLDraFs3guVmDFoE/9wGYW3IhSmikvq8Ig
o5snN15mgkzDll7FZzUYKC+3q5TGgOcvzET1xurQnvu539IPOsgpLQ5em21A
q8cxnfWidPCOCxPomKYg9c0y3NRp0BAs9yvxKxVdaZ+CD5tQwU5qnTbvfzS8
LTF3ycGaArPhKYbJJXScni/jMC2th/Zr937mezLQYP+eR4kJtfB190RExV4m
9nRIbH3vWg0JmndWy71noqW1Z2L+3kpI29XOokawUNdALlB9uAyeDq8982QT
G11KLvNuTSkBZ9rZXaIFbJRUOHDhoWIRiNVF/VAWJfCVsgzLOzYPQucFjvQG
EzjdaPB5LD8LjsVE1lW8INB5Z8etrWWpQNkk6xckRqI6O+aBuG488A5pVW89
TmImWDYPikfAt1VDZ12CSCzQtjrsPeINpmMJt/amktimIM1sKtDHtPnBmIBl
vutlnnV/0+eP9//zfqSSSOJ6oyTuR0lR2Gbe8u3yVRJ1U0gPqElESyOBDepH
SHQSNaZyv07DxxmaWLOWRBlHBWevnmwcnV7KmGkn8Ftu6conzHzkqWcoHHMl
MLR+0iD8fhGuqHLNGp1jI/nqSs4qyVJMTr5tJxnKxl0SS9vnrpbjVreiQzDN
wogAFaMhohKDN8QRxY4sfLywrlz/VzWaDnq+o7GYOOl1YLFNsA5lIwQsPnEy
sb9d+NWURANmhTb/qgEGfjLbMv4gkYJG9q3liV50/FDxuXJrJBWzBk4qbU6n
ofV0zH6HyzR0NYKVr+qoWK+gwDFqQse9Dn2MC00UfOinY6W7jYGpEiqrO4Ma
MIX/zr329wyc/GXNO3ylDuk5D5smM5l4/7OaWeixGjyzX/eT/SEWVo8bRE9u
q0KhD9opkYMsFJW1Eq4aKMew2G9GK93Y2PGRwrvuTinSCEHum1/ZWDBC7yzY
V4y7mmRrs2wIvL/vjlptYgF69rX689EJVDyj9Ne9Ngc3mAjsSOQkMUXvcWQ6
kY7/rr3W+AMkvvZ2P6LNTsK3VdYB/FdIDNEQ1f9jewurDM27GHEk1qxPPrjk
ch3NNk36v13muQ7HB6uvoieQfnLY5UY6iXvr1BreMzyg94rYcFIYiZ8bc/q6
ToSBQ9utATnH5XcR9yg+LjAOpLwMCs/Lknh9V2xd9f0UeJLQ/uvMJwK164/+
N9SWCa5Hb2ZbJxC4neOdwOH6XBApEYrx2U2gUOVDsV/3C+F59THnlUw23lYu
TDwkWwKtJzR2OiixkfsiqOeGlMGbSzxLvfkszBZkZsc+qoBez8djnYtM/HXR
RSl5RTVENQccqD/GRFOTzlS9fbXwgf5BfC6ZgRtlipZ0jesho9nBc0/XMs8z
3A+IyFDgwsLGhQe/adjiVZr/SpwKTZKVavbraNjBmdHUtZYG3EFTtBAJKk7f
k7c4Mk6DiWLX6h5ZCh5opNLuPaTDgkXdvzem9djxCAWrkxigYDGczKVSi03N
mVf8jjIh09il0mtVNapy339TvsAEc4bc2djuCnxh7+HclceCotKSQDKiDMME
ePg9FNngfeSEtZ98Ce5UXfLdy2CDrdqSisajQnQY3XyPKUsAwJFKHnYuDl0X
+kaJJ6CDfVSs8VEmHlr0qnnzkQCew8NHCrtT8Nn5joC/MiQErA5VqImLQzfD
uzlvHEi4n+pgMOsehoHjUWGOYSToZxp+6Vn0QJ6pjYLn0kl436IRHxlpB4ZB
D9o+Z5FACB9KidC5DuHXHBpex5Gw4sNf726DW6Cc1C9y7AoJtdlqRsr1SWCy
yiX6+EESFkeFmwoa0iFtHReHINfy+qDN44klOWD4zWtLFZ0A0TKbUz+iC6CR
eaXI9vgyt37y7jGXK4btpaz6k8NsUB3V9316qxR0vFrS/7mx4c8lLvGw/nIY
uY8T2W9ZwKSs7Pu0qQpszjfujtdjgUqvpeNtkxqg37A3P5jNhA1LwktrLtWB
6Zksp10fGTBVN9O/JrABTvzP0LFJjAHHKtwqckgKyHCfpoSa0WHq9E2T7bVU
CPwcvWGlJw241ugG+KTSwNg2TbQ/igqZH10a/12hg2HLuaS0ZAokUxLilHQZ
sNAYqEeXboDP/YyeUA4mmL32up63oQ6m9M8fdmcyobf48pzW72rwS4jiuerA
gndCCe3jzZVgqBPwQ36KBRGumYlSgeWwwLfApRCyfO/lWkuGMqWw5b3btMgc
G9x3mNY96yoCrYI9TqnnCegcGhlIbs0Hl9Qmeft2Ap5QB64ee5UNX5oUJxXW
khA5kjs++yEN7udMbO03JuFobNzkiZZE2H1ERU3hKgndwvNOk8VR4PVCUlw4
kYRs+T0fjk77Q+phDSHfZY/jCzuzM+q+AVzjUuo1Tl3u3zNsrv5+6I1GQQxG
ZhAJl9KbftHXRmChlGmk53ES/kkcCOCRj0etF4IhI2IkKHK6S0vnpqLkvz4T
5ZcETH6f59mckYWGvs75fjcJCD9Xq8YKzcMN63l2TYgSoHXaaemGfBGm+Ppa
jxWwgTKmwPkjvgTv91R+b93Mhn6J/fpin8rw3jA32RzJglKhtJbCPZUoIPLT
9tgHJlz4YvaB+2w1ykr9yvq4jwkzp9usnt+uxWCxv4q/vRhQwm+jSiusxzhR
T4u50mWeV6X0l1hS8Gutknj0ExpM8ZiwC42pmNBmeVjqGxUcT8h+rlelYc6g
SMilWQrs352uqCpCR+XplH0T8w1gCk/mc77Tkd4rOvR+og7IFbO2tlQG9kUq
80+9rIHuM62v319iYrhc/uztqirw3ic+0LyJhbMT3SarPCrA7WLmoh+bhYKJ
eqID4mVQ8ztiocCIjRevRU1fe1gMOgGLMa+62Phj/14dJ5dCEHa0+dp5YDkX
4w13bfl8F3qHBPnE8wj00lLX3DyZAba+RXHZYwTOWd/36Z1KhhmN2W4OZRKt
vol1Nr6KhRYHzh2S50g8VWy2N+5SCHTxqa74GEWi3UO9k1pSrtA5k71mZ+by
fK2U+uncM7i7tHbbm+X6Z1x2FKsyGA2pa3euiln2BS9Y7zYbg+tC/3eSfYFE
kSx+dmB0MqrmdPz4p06idcSmVW+iMrDrtsqNpSkCVUWaT+4PuIu761ONhksJ
VCpUkmuRK0TvDQ7Fv/QJDLSZ/PkouRiZsnppx5+x8aNqqgP8LMWgfdGfPKzZ
KHqsMaVQswJ1uIRzbt9nYUiRwdmAa1XYQm53EpRZ9qPQ4xM2FTXYSUnsdLux
3DcL/hp7er8OfVk6/HwdDNxxcZ9MWk8Dzg1++X55no7BDU0DOz9RsLcr+MBm
WTp2OfuM9Dyjoky/uWSuMQ0Pzay4oELSUN78jmq0IxVF/kbysFLoaDgbcMvv
AgWNnX54djov8/14oKvQ/+oxpiuqf0iciRyVP8t7yFo0Dg47ceMpE4N6Jy8E
p1ZjgtidEKkAFn4x5XkU5FCJqtXTle5r2XhAyXFEU7QcM78fChxOY2O15RpF
qY4SfO8xelB3LYH8IXE32S5F+FXRwWKbP4HPt360HPmZh/Max09o9hBI/KGH
tXJnIz0wBu02keg/PZq6xJ+GTm3G/xlYkmiWHrSvbHUCVr388vVVIIk5Bqnr
M0YjsHHP0LuZ5OV79PgvSfu2L/ac1v6QtOxxnr8f3nuUvge+/QzJyE8iUeHt
mtkdKn4w8pRmIhNAIpeDy7xBRySMRm5s1D5Koj1HqjvnUAKI/dnDsyBMYvYX
GbqRbxr0bnvEiu8ikFpXa/rRPRuqhjUuSl8hcOWK9v+KrfLhSqpfMucKAs/V
PfvekloEDzR8zl26zcYgvttimn9KIFbV5TyLk41XX9IFtAzL4epLGb6D7izk
9fLfZhpXCc7Xuv097zMx46sq/7+2arBQpQsxBZnoVjDf/+lLLQzKPV+MNWfg
ukQiMGe2HlqLqjo9w+jIO8zDHr5BgbXN88Nj5TS0CpGK2+xNhdLdt3XvtlFR
gEut/pA9DQb2KFby9VDwiYiDUacmHSri+zjpZQ34jrczWHQNA2zW5xg4Zdfh
AM9h0ZI+Bsw99v508XoNynCqqH2PZcLZU/GdiiZVKOnlFeOhygIdpsQaMf4K
fOrasbOxlwVRTpPb8ppKcf/8PfKCExu6eCYeyJwuRkzew73hLRvEa460Xp0o
wHvRZZvdzAgwC3X70yB4F7vuCBtuqSVg0X+cS2h7Bm4Skdv6eZ6AZyM5/Q1i
yZjdvl4qRYsE3ZaNYCsdg0lTGpum3EkIKQp8l8URhBtmTnGNxZKQOygdeivN
CQ/L0C9eXOa5Bu57s9vfDay8ZTvsMkio6/46Ro0NBX7tQUmMIKHcbUInreY2
GG2J/FJ1mgSLZw7qPk4poEKec1FWIMEtgdFXb58J/aee+l7/ToBqTs7QGZNc
kNIc8qelE7C+ebdUc2oh0IMH76xXJkDTzqV5fKYYJEVHyj+2suGq1vY7Ry3K
IDF2f+sVbTZ4DnOStncr4HRdWppQDQv4Y1IMM/urYKtD4Iz8ahZwJ4yzi7hr
YUm46cE+RybMHf2+T2h7PVDNPojcKWJA5J74TQ+EKfCpSnj//Vd0WDy+/j/H
NVTQnpDhPMVNB3l7md5981S4urdx5zsJGqQeBJv8IRrcmRz5/EWVCtK22w6s
Z9FhRVS732odCjQIyjkthTLgZZj+5Ee/evj6bkF/QHd5345vkiFOtXDoqf9F
mTEmfBvTVDRUq4aLF9ueeCSz4PknZkLOfAXMdPTa6kizwWXRr+sHrQwOVeYe
VK1mw82HHkqVDiXA768WNS1OgPqeMb2jc4Vg0khRVIkmgO4NOc1b8oDb5R6z
ZHD53DYMLLbszYIDEkFmayRJ4DQ5FFmnkgqTSqPbtE+S8DyvOejiyTvLXLfz
XhtCgrqlKrzVDIeJvtx/59NIuJOn0vZGzAsmg04Pqy/zPVxPdaiS1xI3W565
FxRPQtGxvJTp/Gto5mPeCd7Lnpbe8+uqfzS+3MyuSDUgIeixtwZhlIQKq8Qu
Z/KSIDEtGC1oko6L9qXX/BqX+T4ge3k/5ODh1wEmZx0JSPv5In2lVAFyDH+X
LRpnw6S32QPqXBFOBxkuBV5lgzK1yFfhRCkmyYoJ6H9nwZ9bB5z/VJZj1vUP
3vbmLOBRuSpya6QSj5iEDMlVMEGd3/v4ze012K16XnfXbwYoauobeh6swzlt
puwDhWWPO+r+Zsq8Af2FY8LiHOmQ87FB7X0ZBVd6f1i9ImzZ0/kFrfWyqSh7
9vRQWxYV3nNvPBgaRsMwe8k/p8ooMCp3ZJbTiY4k4/rZT8cawMeJN1VtLwN1
2Z9f2kAdKKh50hN/M1Bd+l+3s1gNdA0Ej8ZXMDGk/XrP2R+VALw/XZnmyzkv
+c79UUU5rApv90j7zsL/A8y55Nk=
"]]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0., 0.},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-0.0999994802372186,
0.09999770327001149}, {-0.09999796954524093, 0.09999952903098842}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.7687009282955008`*^9, 3.7687009784243793`*^9,