Skip to content

Latest commit

 

History

History
33 lines (33 loc) · 1.25 KB

Algorithms for Unconstrained Optimization.md

File metadata and controls

33 lines (33 loc) · 1.25 KB

We study algorithms that produce iterates according to well determined rules–Deterministic Algorithm rather than some random selection process–Randomized Algorithm.

Classes of Problems

![[Pasted image 20240524000255.png]]

Iterative methods: Finite vs Convergence

![[Pasted image 20240524000334.png]]

Search directions

![[Pasted image 20240524000429.png]] $p^k$ 选做是 $x^k$ 的一个函数,标量 $\alpha_k$ 使用line search rules确定

The general idea

![[Pasted image 20240524000547.png]] ![[Pasted image 20240524000616.png]] ![[Pasted image 20240524000630.png]]

Speed of convergence

Q-convergence

![[Pasted image 20240524000711.png]]

R-convergence

![[Pasted image 20240524000808.png]]

Unconstrained minimization of smooth functions

![[Pasted image 20240524000935.png]] 直接寻找global minimizer太困难,将目标改为寻找local minimizer ![[Pasted image 20240524000956.png]]

Descent method

![[Pasted image 20240524001039.png]]

Accurate Line Search

$$\alpha_k=\arg\min_{\alpha\geq 0}\left{f(x^k+\alpha p^k)\right}$$

Inaccurate Line Search

![[Pasted image 20240524001217.png]]

Methods

[[Steepest Descent Method]] [[Newton Method]] [[The Barzilai-Borwein Method]] [[Conjugate Direction Method]] [[Quasi-Newton Method]]