Skip to content

Latest commit

 

History

History
31 lines (31 loc) · 1.61 KB

Newton Method.md

File metadata and controls

31 lines (31 loc) · 1.61 KB

![[Pasted image 20240618192009.png]] 无约束local minimizer,满足 $\nabla f=0$ 对于单变量标量函数,即为 $f'(x)=0$ ,若 $f$ 满足二阶连续可微,则可用Newton Method来求解

Newton method for solving the equation $g(x)=0$

![[Pasted image 20240525150920.png]] ![[Pasted image 20240525150931.png]] ![[Pasted image 20240618192357.png]] ![[Pasted image 20240525151017.png]] 不一定能够收敛![[Pasted image 20240618192508.png]]

Locally Quadratic Convergence of Newton Method

![[Pasted image 20240525151222.png]] 收敛速度为Q-quadratic convergence[[Algorithms for Unconstrained Optimization#Q-convergence]]

Remark

![[Pasted image 20240525151334.png]] 正二次型函数使用Newton法,则一步收敛

Newton method for solving a system of equations $\textbf{g}(\textbf{x}) = 0$

![[Pasted image 20240525151609.png]]

Some computational issues

![[Pasted image 20240525153848.png]] Newton法需要计算一阶、二阶导,开销可能较大 在优化场景下 $\textbf{g}(\textbf{x})=\nabla f(\textbf{x}),\nabla\textbf{g}(\textbf{x})=\nabla^2 f(\textbf{x})$ 为Hessian矩阵,在minimizer处半正定 当Hessian矩阵非奇异时,Hessian矩阵正定,则可使用 $LDL^T$ 来计算方向 $\textbf{p}$

Storage

![[Pasted image 20240525153940.png]] [[Quasi-Newton Method]]

Descent

![[Pasted image 20240525154302.png]]![[Pasted image 20240525154328.png]] $\nabla^2 f(\bar x)$ 正定是能够保持下降的充分条件

Modified Newton Algorithm with Line Search

$\nabla^2f$ 加上正定对角阵 $E$ 使其正定 ![[Pasted image 20240525183613.png]]![[Pasted image 20240525183623.png]]