Skip to content

Latest commit

 

History

History
15 lines (15 loc) · 1.17 KB

Optimality Conditions for Unconstrained Optimization.md

File metadata and controls

15 lines (15 loc) · 1.17 KB

Unconstrained Problems

考虑无约束问题: $$\begin{array}{ll}\textrm{minimize}& f (\textbf{x}) \ \textrm{subject to} & \textbf{x} \in \mathbb{R}^n\end{array}$$ 则有如下的必要最优性条件: ![[Pasted image 20240515164648.png]] 第一个必要条件可直接由[[Global and Local Optimal Solution#First-Order Necessary Condition]]得出,因为所有方向均为可行方向 第二个必要条件则由[[Global and Local Optimal Solution#Second-Order Necessary Condition]]得出

Sufficient Conditions

![[Pasted image 20240515164946.png]] 注意和上一个定理,必要条件是Hessian矩阵半正定[[Positive-definite Matrix#Positive Semi-definite Matrix]],充分条件是Hessian矩阵正定[[Positive-definite Matrix#Positive-definite Matrix]],因而可以推出strictly local minimizer。使用Talor展开可得出[[Taylor's Theorem]] ![[Pasted image 20240515165115.png]] 若 $f$ 是凸函数且连续可微,则条件简化,而且可以得到global minimizer 即global minimizer等价于梯度为 $0$ ![[Pasted image 20240515165303.png]] $\bar{x}$ 处的梯度为 $0$ ,且Hessian在 $\bar x$ 的一个邻域内保持半正定,则 $\bar x$ 为local minimizer