![[Pasted image 20240605111002.png]]
- Example
![[Pasted image 20240605111327.png]]
![[Pasted image 20240605134922.png]]
期望当
$c$ 趋于$+\infty$ 时,最优解可以趋近原问题的最优解 当$c_kP(x^k)$ 足够小时结束 假定对于任意的$k$ ,penalty problem都有解 - Example ![[Pasted image 20240605134940.png]]
![[Pasted image 20240605135052.png]]
随着
-
$q(x^k,c_k)$ 的最优值递增(trival) -
$P(x^k)$ 递减(因为惩罚系数变高了) -
$f(x^k)$ 递增(因为逐渐趋于可行域) ![[Pasted image 20240605135245.png]] - Proof$$f(x^)=f(x^)+c_kP(x^*)\geq q(x^k,c_k)=f(x^k)+c_kP(x^k)\geq f(x^k)$$
The above two lemmas give global convergence of the penalty method.
![[Pasted image 20240605135347.png]]
Penalty法产生的点列为
${x^k}$ ,则该点列的任何极限点均为原问题的最优解
![[Pasted image 20240605135418.png]] 原问题有最优解,但penalty problem不一定有最优解 ![[Pasted image 20240605135606.png]]