-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathtrain.py
48 lines (37 loc) · 1.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
from typing import Dict, Any
import torch
import hydra
from omegaconf import DictConfig, OmegaConf
from model_training.utils import load_hydra_config, create_logger
from model_training.train.trainer import DAD3DTrainer
from model_training.model import load_model
from model_training.train.flame_lightning_model import FlameLightningModel
from model_training.data import FlameDataset
logger = create_logger(__name__)
torch.autograd.set_detect_anomaly(True)
def train(config):
train_dataset = FlameDataset.from_config(config=config["train"])
val_dataset = FlameDataset.from_config(config=config["val"])
model = load_model(config["model"], config["constants"])
dad3d_net = FlameLightningModel(model=model, config=config, train=train_dataset, val=val_dataset)
dad3d_trainer = DAD3DTrainer(dad3d_net, config)
dad3d_trainer.fit()
def prepare_experiment(hydra_config: DictConfig) -> Dict[str, Any]:
experiment_dir = os.getcwd()
save_path = os.path.join(experiment_dir, "experiment_config.yaml")
OmegaConf.set_struct(hydra_config, False)
hydra_config["yaml_path"] = save_path
hydra_config["experiment"]["folder"] = experiment_dir
logger.info(OmegaConf.to_yaml(hydra_config, resolve=True))
config = load_hydra_config(hydra_config)
with open(save_path, "w") as f:
OmegaConf.save(config=config, f=f.name)
return config
@hydra.main(config_name="train", config_path="model_training/config")
def run_experiment(hydra_config: DictConfig) -> None:
config = prepare_experiment(hydra_config)
logger.info("Experiment dir %s" % config["experiment"]["folder"])
train(config)
if __name__ == "__main__":
run_experiment()