-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreetlight.py
47 lines (33 loc) · 1.26 KB
/
streetlight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy
numpy.random.seed(1)
def relu(x):
return (x > 0) * x
def relu2deriv(output):
return output > 0
def neuronet(input):
layer_1 = relu(numpy.dot(input, weights_0_1))
layer_2 = numpy.dot(layer_1, weights_1_2)
return round(layer_2[0])
streetlights = numpy.array([[1, 0, 1],
[0, 1, 1],
[0, 0, 1],
[1, 1, 1]])
walk_vs_stop = numpy.array([[0, 1, 0, 1]]).T
alpha = 0.2
hidden_size = 4
weights_0_1 = 2 * numpy.random.random((3, hidden_size)) - 1
weights_1_2 = 2 * numpy.random.random((hidden_size, 1)) - 1
for iteration in range(60):
layer_2_error = 0
for i in range(len(streetlights)):
layer_0 = streetlights[i:i + 1]
layer_1 = relu(numpy.dot(layer_0, weights_0_1))
layer_2 = numpy.dot(layer_1, weights_1_2)
layer_2_error += numpy.sum((layer_2 - walk_vs_stop[i:i + 1]) ** 2)
layer_2_delta = (walk_vs_stop[i:i + 1] - layer_2)
layer_1_delta = layer_2_delta.dot(weights_1_2.T) * relu2deriv(layer_1)
weights_1_2 += alpha * layer_1.T.dot(layer_2_delta)
weights_0_1 += alpha * layer_0.T.dot(layer_1_delta)
if iteration % 10 == 9:
print("Error:" + str(layer_2_error))
print(neuronet([0, 1, 0]))