-
Notifications
You must be signed in to change notification settings - Fork 1
/
evaluate_augmentation.py
75 lines (67 loc) · 2.41 KB
/
evaluate_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import argparse
from evaluation.evaluation_engine import evaluate
from TestRunner import get_implementation
parser = argparse.ArgumentParser(
description="This is the evaluate function. This will evaluate your specified "
"transformation on pre-defined models."
)
parser.add_argument("-l", "--language", help="language to evaluate over", default="en")
parser.add_argument("--transformation", "-t", required=False)
parser.add_argument("--filter", "-f", required=False)
parser.add_argument("--task_type", "-task", help="type of the task")
parser.add_argument(
"--model",
"-m",
help="HuggingFace model to evaluate. Note that the model should be in HF-models.",
)
parser.add_argument(
"-d",
"--dataset",
help="Name of the HuggingFace dataset to evaluate. " "Note that the dataset should be in HF-datasets.",
)
parser.add_argument(
"-p",
"--percentage_of_examples",
help="percentage of examples to test",
default=20,
)
parser.add_argument(
"-b",
"--batch_size",
help="batch size for evaluation tasks",
default=8,
)
"""
Just run this file using the following command:
python evaluate.py -t ButterFingersPerturbation
"""
if __name__ == "__main__":
args = parser.parse_args()
if args.transformation is None and args.filter is None:
raise ValueError(
"Both transformation and filter can't be None. Either specify the name of "
"a transformation class (-t) "
"or a filter class (-f)"
)
# Identify the transformation that the user has mentioned.
if_filter = args.transformation is None
if args.transformation:
implementation = get_implementation(args.transformation)
else:
implementation = get_implementation(args.filter, "filters")
# Use the tasks and the locales of an implementation to retrieve an HF model and a test set.
if True: # domain should have name and locale.
languages = implementation.languages
if languages != "All" and args.language not in languages:
raise ValueError(f"The specified transformation is applicable only for the locales={languages}.")
evaluate(
implementation,
args.task_type,
args.language,
args.model,
args.dataset,
int(args.percentage_of_examples),
if_filter,
dump_results=True,
batch_size=int(args.batch_size),
)