From 398c5d1a80658361052f4c0e93b7813292e77219 Mon Sep 17 00:00:00 2001 From: Prathameshdhande22 Date: Fri, 2 Feb 2024 20:08:51 +0530 Subject: [PATCH] Added scripts to turn on the project --- .gitignore | 2 +- bot/ML/Prakriti.ipynb | 1430 ++--------------------------------------- package-lock.json | 317 +++++++++ package.json | 10 + 4 files changed, 397 insertions(+), 1362 deletions(-) create mode 100644 package-lock.json create mode 100644 package.json diff --git a/.gitignore b/.gitignore index 420c2a5..1fc6d49 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,3 @@ PrakritiGPT/ Dataset/ - +node_modules diff --git a/bot/ML/Prakriti.ipynb b/bot/ML/Prakriti.ipynb index 2dc8b33..6e7d0e3 100644 --- a/bot/ML/Prakriti.ipynb +++ b/bot/ML/Prakriti.ipynb @@ -2,11 +2,7 @@ "cells": [ { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 23, -======= "execution_count": 1, ->>>>>>> dev "metadata": {}, "outputs": [], "source": [ @@ -19,9 +15,6 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 24, -======= "execution_count": 2, "metadata": {}, "outputs": [ @@ -1262,7 +1255,6 @@ { "cell_type": "code", "execution_count": 9, ->>>>>>> dev "metadata": {}, "outputs": [ { @@ -1455,1146 +1447,34 @@ " ...\n", " \n", " \n", - " 291\n", - " 0\n", - " 1\n", - " 0\n", - " 1\n", - " 2\n", - " 1\n", - " 0\n", - " 0\n", - " 1\n", - " 0\n", - " ...\n", - " 0\n", - " 1\n", - " 0\n", - " 1\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " \n", - " \n", - " 292\n", - " 1\n", - " 1\n", - " 1\n", - " 1\n", - " 1\n", - " 1\n", - " 2\n", - " 0\n", - " 1\n", - " 2\n", - " ...\n", - " 1\n", - " 1\n", - " 1\n", - " 0\n", - " 1\n", - " 1\n", - " 1\n", - " 0\n", - " 0\n", - " 1\n", - " \n", - " \n", - " 293\n", - " 1\n", - " 1\n", - " 1\n", - " 1\n", - " 1\n", - " 1\n", - " 2\n", - " 0\n", - " 2\n", - " 0\n", - " ...\n", - " 1\n", - " 1\n", - " 2\n", - " 0\n", - " 1\n", - " 1\n", - " 2\n", - " 2\n", - " 0\n", - " 1\n", - " \n", - " \n", - " 294\n", - " 1\n", - " 1\n", - " 1\n", - " 1\n", - " 1\n", - " 1\n", - " 2\n", - " 0\n", - " 1\n", - " 0\n", - " ...\n", - " 1\n", - " 1\n", - " 2\n", - " 0\n", - " 1\n", - " 1\n", - " 2\n", - " 2\n", - " 0\n", - " 1\n", - " \n", - " \n", - " 295\n", - " 1\n", - " 1\n", - " 0\n", - " 1\n", - " 1\n", - " 1\n", - " 2\n", - " 0\n", - " 0\n", - " 0\n", - " ...\n", - " 1\n", - " 1\n", - " 0\n", - " 2\n", - " 1\n", - " 1\n", - " 0\n", - " 2\n", - " 0\n", - " 3\n", - " \n", - " \n", - "\n", - "

296 rows × 21 columns

\n", - "" - ], - "text/plain": [ - " Body Size Body Weight Height Bone Structure Com1lexion \\\n", - "0 1 1 1 2 2 \n", - "1 1 1 0 1 1 \n", - "2 0 1 1 1 1 \n", - "3 0 1 0 0 1 \n", - "4 2 1 0 1 0 \n", - ".. ... ... ... ... ... \n", - "291 0 1 0 1 2 \n", - "292 1 1 1 1 1 \n", - "293 1 1 1 1 1 \n", - "294 1 1 1 1 1 \n", - "295 1 1 0 1 1 \n", - "\n", - " General feel of skin Texture of Skin Hair Color A11earance of Hair \\\n", - "0 0 0 0 1 \n", - "1 0 2 1 0 \n", - "2 1 2 0 0 \n", - "3 0 2 0 1 \n", - "4 1 2 0 0 \n", - ".. ... ... ... ... \n", - "291 1 0 0 1 \n", - "292 1 2 0 1 \n", - "293 1 2 0 2 \n", - "294 1 2 0 1 \n", - "295 1 2 0 0 \n", - "\n", - " Sha1e of face ... Eyelashes Blinking of Eyes Cheeks Nose \\\n", - "0 0 ... 1 1 0 2 \n", - "1 0 ... 1 1 1 2 \n", - "2 0 ... 1 1 1 2 \n", - "3 2 ... 0 1 1 0 \n", - "4 0 ... 0 1 0 1 \n", - ".. ... ... ... ... ... ... \n", - "291 0 ... 0 1 0 1 \n", - "292 2 ... 1 1 1 0 \n", - "293 0 ... 1 1 2 0 \n", - "294 0 ... 1 1 2 0 \n", - "295 0 ... 1 1 0 2 \n", - "\n", - " Teeth and gums Li1s Nails A11etite Liking tastes Dosha \n", - "0 2 0 2 2 0 3 \n", - "1 1 0 0 2 0 3 \n", - "2 1 1 1 2 0 1 \n", - "3 1 1 0 2 0 3 \n", - "4 1 1 1 1 1 3 \n", - ".. ... ... ... ... ... ... \n", - "291 0 0 0 0 0 0 \n", - "292 1 1 1 0 0 1 \n", - "293 1 1 2 2 0 1 \n", - "294 1 1 2 2 0 1 \n", - "295 1 1 0 2 0 3 \n", - "\n", - "[296 rows x 21 columns]" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df=pd.read_csv(\"../dataset/data.csv\")\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Body SizeBody WeightHeightBone StructureCom1lexionGeneral feel of skinTexture of SkinHair ColorA11earance of HairSha1e of faceEyesEyelashesBlinking of EyesCheeksNoseTeeth and gumsLi1sNailsA11etiteLiking tastes
011122000101110220220
111011021001111210020
201111120000111211120
301001020121011011020
421010120000010111111
...............................................................
29101012100101010100000
29211111120120111011100
29311111120201112011220
29411111120101112011220
29511011120002110211020
\n", - "

296 rows × 20 columns

\n", - "
" - ], - "text/plain": [ - " Body Size Body Weight Height Bone Structure Com1lexion \\\n", - "0 1 1 1 2 2 \n", - "1 1 1 0 1 1 \n", - "2 0 1 1 1 1 \n", - "3 0 1 0 0 1 \n", - "4 2 1 0 1 0 \n", - ".. ... ... ... ... ... \n", - "291 0 1 0 1 2 \n", - "292 1 1 1 1 1 \n", - "293 1 1 1 1 1 \n", - "294 1 1 1 1 1 \n", - "295 1 1 0 1 1 \n", - "\n", - " General feel of skin Texture of Skin Hair Color A11earance of Hair \\\n", - "0 0 0 0 1 \n", - "1 0 2 1 0 \n", - "2 1 2 0 0 \n", - "3 0 2 0 1 \n", - "4 1 2 0 0 \n", - ".. ... ... ... ... \n", - "291 1 0 0 1 \n", - "292 1 2 0 1 \n", - "293 1 2 0 2 \n", - "294 1 2 0 1 \n", - "295 1 2 0 0 \n", - "\n", - " Sha1e of face Eyes Eyelashes Blinking of Eyes Cheeks Nose \\\n", - "0 0 1 1 1 0 2 \n", - "1 0 1 1 1 1 2 \n", - "2 0 0 1 1 1 2 \n", - "3 2 1 0 1 1 0 \n", - "4 0 0 0 1 0 1 \n", - ".. ... ... ... ... ... ... \n", - "291 0 1 0 1 0 1 \n", - "292 2 0 1 1 1 0 \n", - "293 0 1 1 1 2 0 \n", - "294 0 1 1 1 2 0 \n", - "295 0 2 1 1 0 2 \n", - "\n", - " Teeth and gums Li1s Nails A11etite Liking tastes \n", - "0 2 0 2 2 0 \n", - "1 1 0 0 2 0 \n", - "2 1 1 1 2 0 \n", - "3 1 1 0 2 0 \n", - "4 1 1 1 1 1 \n", - ".. ... ... ... ... ... \n", - "291 0 0 0 0 0 \n", - "292 1 1 1 0 0 \n", - "293 1 1 2 2 0 \n", - "294 1 1 2 2 0 \n", - "295 1 1 0 2 0 \n", - "\n", - "[296 rows x 20 columns]" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X=df.drop(columns=\"Dosha\")\n", - "X" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 3\n", - "1 3\n", - "2 1\n", - "3 3\n", - "4 3\n", - " ..\n", - "291 0\n", - "292 1\n", - "293 1\n", - "294 1\n", - "295 3\n", - "Name: Dosha, Length: 296, dtype: int64" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Y=df[\"Dosha\"]\n", - "Y" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Body SizeBody WeightHeightBone StructureCom1lexionGeneral feel of skinTexture of SkinHair ColorA11earance of HairSha1e of faceEyesEyelashesBlinking of EyesCheeksNoseTeeth and gumsLi1sNailsA11etiteLiking tastes
12811000122011101112000
6411110010010012100110
1422022222222212222222
11422022222222212222222
1801010121010101010101
...............................................................
7502101021000101010001
2211112220102001101001
7211102020000100100020
1500000020000000000000
16811201120100110101110
\n", - "

207 rows × 20 columns

\n", - "
" - ], - "text/plain": [ - " Body Size Body Weight Height Bone Structure Com1lexion \\\n", - "128 1 1 0 0 0 \n", - "64 1 1 1 1 0 \n", - "14 2 2 0 2 2 \n", - "114 2 2 0 2 2 \n", - "18 0 1 0 1 0 \n", - ".. ... ... ... ... ... \n", - "75 0 2 1 0 1 \n", - "22 1 1 1 1 2 \n", - "72 1 1 1 0 2 \n", - "15 0 0 0 0 0 \n", - "168 1 1 2 0 1 \n", - "\n", - " General feel of skin Texture of Skin Hair Color A11earance of Hair \\\n", - "128 1 2 2 0 \n", - "64 0 1 0 0 \n", - "14 2 2 2 2 \n", - "114 2 2 2 2 \n", - "18 1 2 1 0 \n", - ".. ... ... ... ... \n", - "75 0 2 1 0 \n", - "22 2 2 0 1 \n", - "72 0 2 0 0 \n", - "15 0 2 0 0 \n", - "168 1 2 0 1 \n", - "\n", - " Sha1e of face Eyes Eyelashes Blinking of Eyes Cheeks Nose \\\n", - "128 1 1 1 0 1 1 \n", - "64 1 0 0 1 2 1 \n", - "14 2 2 2 1 2 2 \n", - "114 2 2 2 1 2 2 \n", - "18 1 0 1 0 1 0 \n", - ".. ... ... ... ... ... ... \n", - "75 0 0 1 0 1 0 \n", - "22 0 2 0 0 1 1 \n", - "72 0 0 1 0 0 1 \n", - "15 0 0 0 0 0 0 \n", - "168 0 0 1 1 0 1 \n", - "\n", - " Teeth and gums Li1s Nails A11etite Liking tastes \n", - "128 1 2 0 0 0 \n", - "64 0 0 1 1 0 \n", - "14 2 2 2 2 2 \n", - "114 2 2 2 2 2 \n", - "18 1 0 1 0 1 \n", - ".. ... ... ... ... ... \n", - "75 1 0 0 0 1 \n", - "22 0 1 0 0 1 \n", - "72 0 0 0 2 0 \n", - "15 0 0 0 0 0 \n", - "168 0 1 1 1 0 \n", - "\n", - "[207 rows x 20 columns]" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.3,random_state=2)\n", - "x_train" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
RandomForestClassifier(n_estimators=400)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ], - "text/plain": [ - "RandomForestClassifier(n_estimators=400)" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model=RandomForestClassifier(n_estimators=400)\n", - "model.fit(x_train,y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 3, 3, 3, 0, 3, 0, 3, 3, 3, 3, 3, 0, 3, 3, 0, 3, 1, 0, 0, 3, 3,\n", - " 0, 3, 3, 3, 0, 3, 3, 1, 3, 3, 0, 3, 0, 0, 0, 3, 3, 3, 2, 3, 5, 4,\n", - " 0, 0, 3, 0, 3, 3, 0, 3, 3, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 1,\n", - " 0, 0, 3, 1, 3, 3, 1, 0, 0, 4, 0, 5, 5, 0, 1, 3, 1, 3, 0, 3, 3, 0,\n", - " 2], dtype=int64)" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_pred=model.predict(x_test)\n", - "y_pred" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.9325842696629213" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "accuracy_score(y_test,y_pred)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -2606,268 +1486,148 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", + " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", "
Body SizeBody WeightHeightBone StructureCom1lexionGeneral feel of skinTexture of SkinHair ColorA11earance of HairSha1e of face...EyelashesBlinking of EyesCheeksNoseTeeth and gumsLi1sNailsA11etiteLiking tastesDosha
011195112200010...1102202203
1110...1102100...1112100203
2011961121111112111201
30100102012...0110110203
42101012000...11970101111113
..................................................................
29101012100210...0101000000
2921111112012...11101110013
29311111111982020...1120112201
2941111112010...1120211202014
295119921221011120010...110121102003
\n", - "

296 rows × 21 columns

\n", + "

1200 rows × 21 columns

\n", "
" ], "text/plain": [ - " Body Size Body Weight Height Bone Structure Com1lexion \\\n", - "0 1 1 1 2 2 \n", - "1 1 1 0 1 1 \n", - "2 0 1 1 1 1 \n", - "3 0 1 0 0 1 \n", - "4 2 1 0 1 0 \n", - ".. ... ... ... ... ... \n", - "291 0 1 0 1 2 \n", - "292 1 1 1 1 1 \n", - "293 1 1 1 1 1 \n", - "294 1 1 1 1 1 \n", - "295 1 1 0 1 1 \n", + " Body Size Body Weight Height Bone Structure Com1lexion \\\n", + "0 1 1 1 2 2 \n", + "1 1 1 0 1 1 \n", + "2 0 1 1 1 1 \n", + "3 0 1 0 0 1 \n", + "4 2 1 0 1 0 \n", + "... ... ... ... ... ... \n", + "1195 1 1 0 1 1 \n", + "1196 1 1 2 1 1 \n", + "1197 0 0 1 0 1 \n", + "1198 2 2 1 2 1 \n", + "1199 2 1 2 2 1 \n", "\n", - " General feel of skin Texture of Skin Hair Color A11earance of Hair \\\n", - "0 0 0 0 1 \n", - "1 0 2 1 0 \n", - "2 1 2 0 0 \n", - "3 0 2 0 1 \n", - "4 1 2 0 0 \n", - ".. ... ... ... ... \n", - "291 1 0 0 1 \n", - "292 1 2 0 1 \n", - "293 1 2 0 2 \n", - "294 1 2 0 1 \n", - "295 1 2 0 0 \n", + " General feel of skin Texture of Skin Hair Color A11earance of Hair \\\n", + "0 0 0 0 1 \n", + "1 0 2 1 0 \n", + "2 1 2 0 0 \n", + "3 0 2 0 1 \n", + "4 1 2 0 0 \n", + "... ... ... ... ... \n", + "1195 1 2 0 0 \n", + "1196 1 2 0 0 \n", + "1197 1 2 0 2 \n", + "1198 1 2 0 1 \n", + "1199 0 2 0 1 \n", "\n", - " Sha1e of face ... Eyelashes Blinking of Eyes Cheeks Nose \\\n", - "0 0 ... 1 1 0 2 \n", - "1 0 ... 1 1 1 2 \n", - "2 0 ... 1 1 1 2 \n", - "3 2 ... 0 1 1 0 \n", - "4 0 ... 0 1 0 1 \n", - ".. ... ... ... ... ... ... \n", - "291 0 ... 0 1 0 1 \n", - "292 2 ... 1 1 1 0 \n", - "293 0 ... 1 1 2 0 \n", - "294 0 ... 1 1 2 0 \n", - "295 0 ... 1 1 0 2 \n", + " Sha1e of face ... Eyelashes Blinking of Eyes Cheeks Nose \\\n", + "0 0 ... 1 1 0 2 \n", + "1 0 ... 1 1 1 2 \n", + "2 0 ... 1 1 1 2 \n", + "3 2 ... 0 1 1 0 \n", + "4 0 ... 0 1 0 1 \n", + "... ... ... ... ... ... ... \n", + "1195 0 ... 1 1 0 2 \n", + "1196 0 ... 1 1 1 0 \n", + "1197 1 ... 1 0 0 0 \n", + "1198 2 ... 1 1 2 2 \n", + "1199 0 ... 1 1 1 2 \n", "\n", - " Teeth and gums Li1s Nails A11etite Liking tastes Dosha \n", - "0 2 0 2 2 0 3 \n", - "1 1 0 0 2 0 3 \n", - "2 1 1 1 2 0 1 \n", - "3 1 1 0 2 0 3 \n", - "4 1 1 1 1 1 3 \n", - ".. ... ... ... ... ... ... \n", - "291 0 0 0 0 0 0 \n", - "292 1 1 1 0 0 1 \n", - "293 1 1 2 2 0 1 \n", - "294 1 1 2 2 0 1 \n", - "295 1 1 0 2 0 3 \n", + " Teeth and gums Li1s Nails A11etite Liking tastes Dosha \n", + "0 2 0 2 2 0 3 \n", + "1 1 0 0 2 0 3 \n", + "2 1 1 1 2 0 1 \n", + "3 1 1 0 2 0 3 \n", + "4 1 1 1 1 1 3 \n", + "... ... ... ... ... ... ... \n", + "1195 1 1 0 2 0 3 \n", + "1196 1 1 0 1 0 3 \n", + "1197 0 1 1 0 0 3 \n", + "1198 1 1 0 2 0 4 \n", + "1199 1 1 0 0 0 3 \n", "\n", - "[296 rows x 21 columns]" + "[1200 rows x 21 columns]" ] }, - "execution_count": 31, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -2878,11 +1638,7 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 32, -======= "execution_count": 10, ->>>>>>> dev "metadata": {}, "outputs": [ { @@ -2892,11 +1648,7 @@ " dtype=int64)" ] }, -<<<<<<< HEAD - "execution_count": 32, -======= "execution_count": 10, ->>>>>>> dev "metadata": {}, "output_type": "execute_result" } @@ -2907,11 +1659,7 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 33, -======= "execution_count": 11, ->>>>>>> dev "metadata": {}, "outputs": [ { @@ -2928,11 +1676,7 @@ "3" ] }, -<<<<<<< HEAD - "execution_count": 33, -======= "execution_count": 11, ->>>>>>> dev "metadata": {}, "output_type": "execute_result" } @@ -2943,27 +1687,12 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 34, -======= "execution_count": 12, ->>>>>>> dev "metadata": {}, "outputs": [ { "data": { "text/plain": [ -<<<<<<< HEAD - "array([[23, 0, 0, 0, 0, 0],\n", - " [ 0, 7, 0, 0, 0, 0],\n", - " [ 0, 0, 3, 3, 0, 0],\n", - " [ 3, 0, 0, 44, 0, 0],\n", - " [ 0, 0, 0, 0, 3, 0],\n", - " [ 0, 0, 0, 0, 0, 3]], dtype=int64)" - ] - }, - "execution_count": 34, -======= "array([[ 52, 0, 0, 0, 0, 0],\n", " [ 0, 28, 0, 0, 0, 0],\n", " [ 0, 0, 16, 0, 0, 0],\n", @@ -2973,7 +1702,6 @@ ] }, "execution_count": 12, ->>>>>>> dev "metadata": {}, "output_type": "execute_result" } @@ -2985,11 +1713,7 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 35, -======= "execution_count": 13, ->>>>>>> dev "metadata": {}, "outputs": [], "source": [ @@ -2998,11 +1722,7 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 36, -======= "execution_count": 14, ->>>>>>> dev "metadata": {}, "outputs": [], "source": [ @@ -3011,11 +1731,7 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 37, -======= "execution_count": 15, ->>>>>>> dev "metadata": {}, "outputs": [ { @@ -3024,21 +1740,13 @@ "" ] }, -<<<<<<< HEAD - "execution_count": 37, -======= "execution_count": 15, ->>>>>>> dev "metadata": {}, "output_type": "execute_result" }, { "data": { -<<<<<<< HEAD - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAGdCAYAAAAczXrvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2WElEQVR4nO3deXgUZbr//08nkg5LEiCBBIQgsgUSgohAggoKCKIHBeICoiKH44AGfgLjMnF0Ao7ajDguyCKKF+ASc0RFR0fghyDBJSBEWdwYWQbksAdIICadmPT3jx6DXWFr6HS1Ve8XV12Xqe6uuvu2krvvp56ucng8Ho8AAIBthJkdAAAACC6KPwAANkPxBwDAZij+AADYDMUfAACbofgDAGAzFH8AAGyG4g8AgM1Q/AEAsJkLzA7gV3e/9Y3ZIYSEF4almB0CAIS8yFquXnW7jg/Ytkq/nhmwbQVKyBR/AABChsPaA+PWfncAAKAGOn8AAIwcDrMjqFUUfwAAjCw+7E/xBwDAyOKdv7U/2gAAgBro/AEAMGLYHwAAm2HYHwAAWAmdPwAARgz7AwBgMwz7AwAAK6HzBwDAiGF/AABshmF/AABgJXT+AAAYMewPAIDNWHzYn+IPAICRxTt/a787AABQA50/AABGFu/8Kf4AABiFWfucv7U/2gAAgBro/AEAMGLYHwAAm7H4V/2s/dHGYFBSnP7c/2K9MLSj/n5Dku69PFHxURE+z7m9W3M9cV17zRrWSc/ckKTMyxOVYHiOVeXmvKFB1/RV966dNXL4zdq8aZPZIZmGXHiRBy/y4EUerMNWxb99k/r6ZOthuVZs17N5/1a4w6FJvS9SRPiJT3g7j5RqwZe79ZelP+q51f+WJE3sfZHVPwRq6ZKP9PRTLo29N1O5ixarQ4ck3TN2jAoLC80OLejIhRd58CIPXrbLgyMscEsICs2oasnzn+7UF/8+qj3Fbu0uKtP8dbsVWz9CrRrVrX7Op9uP6MdDP6vw5wrtOlqm977Zr9j6EYqrZ+3u/7WF8zXspls0ZGiG2rRtq0eypyoyMlLvvfuO2aEFHbnwIg9e5MHLdnlwOAK3hCC/i/+hQ4f01FNPaejQoUpPT1d6erqGDh2q6dOn6+DBg7URY62pWydcklRSXnnSxyPCHbq8dSMdPF6uw6UVwQwtqCrKy/X9d98qLb1X9bqwsDClpfXSpo1fmxhZ8JELL/LgRR68yIP1+FX8161bp/bt22vGjBmKiYlR79691bt3b8XExGjGjBlKSkrS+vXrz7gdt9ut4uJin6Wyovyc38S5cEgafkmCfjxYoj3Fbp/HrmrTWC8M7ahZGclKSYjSs3n/VmWVJ6jxBdORo0dUWVmp2NhYn/WxsbE6dOiQSVGZg1x4kQcv8uBlyzyEwLD/tGnT5HA4NHHixOp1ZWVlyszMVGxsrBo0aKCMjAzt37/f7237Ndt/woQJuvnmm/Xiiy/KYRjK8Hg8GjdunCZMmKD8/PzTbsflcmnq1Kk+67redI+63XyvP+Gcl9subabmMZF6auX2Go+t3XVU3+0/rpjICzSgQ5zGprfUtJXb9YuFPwAAAH7D5OH6devWae7cuUpNTfVZP2nSJP3zn//UokWLFBMTo/Hjx2vYsGH6/PPP/dq+Xx9JNm7cqEmTJtUo/JLkcDg0adIkbdiw4YzbycrKUlFRkc9yyZD/8SeU8zKiazOlNo/W31ft0JHSX2o8XlpRpQPHy/XjoZ/1Yv5PSoh26tILo4MWX7A1athI4eHhNSbuFBYWKi4uzqSozEEuvMiDF3nwsmUeTOz8jx8/rpEjR+rll19Wo0aNqtcXFRXplVde0TPPPKO+ffuqW7dumj9/vr744gutWbPGr334FVVCQoK+/PLLUz7+5ZdfKj4+/ozbcTqdio6O9lnC6wRnQt2Irs3U9UJv4T9Ucubz+L9+zLkgPDQnbQRCnYgIdeyUrLVrTozYVFVVae3afKV26WpiZMFHLrzIgxd58CIP5+dkp7rdbvcpn5+Zmanrr79e/fv391lfUFCgiooKn/VJSUlKTEw844i7kV/D/vfff7/+8Ic/qKCgQP369asu9Pv379eKFSv08ssv6+mnn/YrgGC67dJm6pnYULM+36myX6oUHel9+6UVlaqo9Ciufh11bxmjb/cf13F3pRrVvUDXJjVRRWWVNu89ZnL0teuOUaP16MMPKTk5RSmdU/X6awtVWlqqIUOHmR1a0JELL/LgRR68bJeHAA77n+xUd3Z2tqZMmVLjubm5ufrqq6+0bt26Go/t27dPERERatiwoc/6+Ph47du3z6+Y/Cr+mZmZiouL07PPPqvZs2erstI7Sz48PFzdunXTggULdMstt/gVQDBd3dY7WeWBqy/2WT//y9364t9HVVHpUbsm9dW/fZzq1QlTsbtSPx4s0bSV23XMffJvBFjFtYOu05HDhzV75gwdOnRQHZI6avbceYq16pDeaZALL/LgRR68bJeHAH4/PysrS5MnT/ZZ53Q6azzvp59+0n333afly5crMjIyYPs/GYfH4zmnWWwVFRXVszzj4uJUp06d8wrk7re+Oa/XW8ULw1LMDgEAQl5kLV+cvu51zwdsW6Uf3XdWz3vvvfc0dOhQhYeHV6+rrKyUw+FQWFiYli1bpv79++vIkSM+3X+rVq00ceJETZo06axjOuf01alTR82aNTvXlwMAELpMmO3fr18/bd682Wfd6NGjlZSUpIceekgtW7ZUnTp1tGLFCmVkZEiStmzZol27dik9Pd2vfXFjHwAAjEy4LG9UVJRSUnxHf+vXr6/Y2Njq9WPGjNHkyZPVuHFjRUdHa8KECUpPT1daWppf+6L4AwDwO/Hss88qLCxMGRkZcrvdGjhwoGbPnu33dij+AAAYhcgNeVatWuXzc2RkpGbNmqVZs2ad13Yp/gAAGIXoDXkCJTQ+2gAAgKCh8wcAwChEhv1rC8UfAAAjiw/7U/wBADCyeOdv7XcHAABqoPMHAMCIYX8AAOzFYfHiz7A/AAA2Q+cPAICB1Tt/ij8AAEbWrv0M+wMAYDd0/gAAGDDsDwCAzVi9+DPsDwCAzdD5AwBgYPXOn+IPAIABxR8AALuxdu3nnD8AAHZD5w8AgAHD/gAA2AzFP0heGJZidgghYeehn80OISS0iqtndggAYFkhU/wBAAgVdP4AANiM1Ys/s/0BALAZOn8AAIys3fhT/AEAMGLYHwAAWAqdPwAABlbv/Cn+AAAYUPwBALAba9d+zvkDABAq5syZo9TUVEVHRys6Olrp6elasmRJ9eNXXXWVHA6HzzJu3Di/90PnDwCAgVnD/i1atNC0adPUrl07eTweLVy4UDfeeKO+/vprJScnS5LuvvtuPfbYY9WvqVfP/8uhU/wBADAwq/gPHjzY5+cnnnhCc+bM0Zo1a6qLf7169ZSQkHBe+2HYHwCAWuR2u1VcXOyzuN3uM76usrJSubm5KikpUXp6evX6N954Q3FxcUpJSVFWVpZ+/tn/G8JR/AEAMDCeVz+fxeVyKSYmxmdxuVyn3PfmzZvVoEEDOZ1OjRs3TosXL1anTp0kSbfddptef/11ffLJJ8rKytJrr72m22+/3f/35/F4POecnQAq+8XsCEIDt/T14pa+AE4nspZPWjcf+27AtrVjxvU1On2n0ymn03nS55eXl2vXrl0qKirS22+/rXnz5ikvL6/6A8BvrVy5Uv369dPWrVvVpk2bs46Jc/4AANSi0xX6k4mIiFDbtm0lSd26ddO6dev0/PPPa+7cuTWe27NnT0mi+AMAcN5C6Hv+VVVVp5wjsGHDBklSs2bN/NomxR8AAAOzZvtnZWVp0KBBSkxM1LFjx5STk6NVq1Zp2bJl2rZtm3JycnTdddcpNjZWmzZt0qRJk9S7d2+lpqb6tR+KPwAAIeLAgQO68847tXfvXsXExCg1NVXLli3TNddco59++kkff/yxnnvuOZWUlKhly5bKyMjQI4884vd+KP4AABiY1fm/8sorp3ysZcuWysvLC8h+KP4AABhwYx8AAOzG2rWfi/wAAGA3dP4AABhYfdifzl9Sbs4bGnRNX3Xv2lkjh9+szZs2mR1S0P3Prdfphj5daywvPnvqS1BaGceEF3nwIg9edspDIC/vG4psX/yXLvlITz/l0th7M5W7aLE6dEjSPWPHqLCw0OzQgurvc1/XwneXVy+P/X2OJOnyq64xObLg45jwIg9e5MGLPFiL7Yv/awvna9hNt2jI0Ay1adtWj2RPVWRkpN579x2zQwuqmIaN1Sg2rnpZl/+pEi5sqZRLupkdWtBxTHiRBy/y4GW3PND5W1hFebm+/+5bpaX3ql4XFhamtLRe2rTxaxMjM1dFRYVWLf9I/QfdGLIHbm3hmPAiD17kwcuOeaD4W9iRo0dUWVmp2NhYn/WxsbE6dOiQSVGZb+2nn6jk+DH1GzTY7FCCjmPCizx4kQcv8mA9AS/+P/30k/77v//7tM9xu90qLi72WU510wIE3/KP3lO3HpcrNq6p2aEAgDkcAVxCUMCL/+HDh7Vw4cLTPsflcikmJsZnmf634M8qb9SwkcLDw2tMWCksLFRcXFzQ4wkFB/bt0caCtbrmv4aYHYopOCa8yIMXefCyYx6sPuzv9/f8//GPf5z28e3bt59xG1lZWZo8ebLPOk/42d/rOFDqRESoY6dkrV2Tr779+kvy3jpx7dp8DR9xe9DjCQUfL/mHYho2Vve0K80OxRQcE17kwYs8eJEH6/G7+A8ZMkQOh0Mej+eUzznTJx2n0ymn07fYl/3ibySBcceo0Xr04YeUnJyilM6pev21hSotLdWQocPMCchEVVVVWrHkffW99r8UfoF9r//EMeFFHrzIg5fd8hCqHXug+P0XvlmzZpo9e7ZuvPHGkz6+YcMGdev2+/l62LWDrtORw4c1e+YMHTp0UB2SOmr23HmKtehQ1ulsLFirg/v3qf91Q8wOxVQcE17kwYs8eNktDxav/XJ4TtfCn8QNN9ygSy65RI899thJH9+4caO6du2qqqoqvwIxq/MPNTsP/Wx2CCGhVVw9s0MAEMIia3lwst0DSwO2rR+nXxuwbQWK3+l74IEHVFJScsrH27Ztq08++eS8ggIAALXH7+J/5ZWnnwhWv3599enT55wDAgDAbFYf9rfvrC4AAE7B6hP+bH2FPwAA7IjOHwAAA4s3/hR/AACMwsKsXf0Z9gcAwGbo/AEAMGDYHwAAm2G2PwAAsBQ6fwAADCze+FP8AQAwsvqwP8UfAAADqxd/zvkDAGAzdP4AABhYvPGn+AMAYMSwPwAACIo5c+YoNTVV0dHRio6OVnp6upYsWVL9eFlZmTIzMxUbG6sGDRooIyND+/fv93s/FH8AAAwcjsAt/mjRooWmTZumgoICrV+/Xn379tWNN96ob7/9VpI0adIkffDBB1q0aJHy8vK0Z88eDRs2zP/35/F4PH6/qhaU/WJ2BKFh56GfzQ4hJLSKq2d2CABCWGQtn7Tu9tdPAratgkevPq/XN27cWNOnT9dNN92kJk2aKCcnRzfddJMk6YcfflDHjh2Vn5+vtLS0s94mnT8AALXI7XaruLjYZ3G73Wd8XWVlpXJzc1VSUqL09HQVFBSooqJC/fv3r35OUlKSEhMTlZ+f71dMFH8AAAwCOezvcrkUExPjs7hcrlPue/PmzWrQoIGcTqfGjRunxYsXq1OnTtq3b58iIiLUsGFDn+fHx8dr3759fr0/ZvsDAGAQyNn+WVlZmjx5ss86p9N5yud36NBBGzZsUFFRkd5++22NGjVKeXl5AYtHovgDAFCrnE7naYu9UUREhNq2bStJ6tatm9atW6fnn39et956q8rLy3X06FGf7n///v1KSEjwKyaG/QEAMDBrtv/JVFVVye12q1u3bqpTp45WrFhR/diWLVu0a9cupaen+7VNOn8AAAzMushPVlaWBg0apMTERB07dkw5OTlatWqVli1bppiYGI0ZM0aTJ09W48aNFR0drQkTJig9Pd2vmf4SxR8AgBrMusDfgQMHdOedd2rv3r2KiYlRamqqli1bpmuuuUaS9OyzzyosLEwZGRlyu90aOHCgZs+e7fd++J4/QtKxUg4InBBVlz4Fvmr7e/5p0wI3wW7Nn/oEbFuBwm8UAAAGVr+2P8UfAAADi9d+ZvsDAGA3dP4AABgw7A8AgM1YvPYz7A8AgN3Q+QMAYMCwPwAANmP14s+wPwAANkPnDwCAgcUbf4o/AABGVh/2p/gDAGBg8drPOX8AAOyGzh8AAAOG/QEAsBmL136G/QEAsBs6fwAADMIs3vpT/AEAMLB47WfYHwAAu6HzBwDAgNn+AADYTJi1az/FHwAAI6t3/pzzBwDAZuj8AQAwsHjjT+cvSbk5b2jQNX3VvWtnjRx+szZv2mR2SKYgD9Lit3M1avhQDejTQwP69NDY0bcp//NPzQ4r6MiDL343vOyUB0cA/4Ui2xf/pUs+0tNPuTT23kzlLlqsDh2SdM/YMSosLDQ7tKAiD15NmsZr3PhJeuW1RZr36lu69LKeyvrjeG3fttXs0IKKPJzA74YXebAW2xf/1xbO17CbbtGQoRlq07atHsmeqsjISL337jtmhxZU5MHrit5XK/2K3mqZ2EqJrS7S2Mz7VLdePX23eaPZoQUVeTiB3w0vu+UhzBG4JRTZuvhXlJfr++++VVp6r+p1YWFhSkvrpU0bvzYxsuAiDydXWVmpj5d9pLLSUiWndjE7HNPYOQ/8bnjZMQ8OhyNgSyjye8JfaWmpCgoK1LhxY3Xq1MnnsbKyMr311lu68847AxZgbTpy9IgqKysVGxvrsz42NlY7dmw3KargIw++tm39l8aNvk3l5eWqW7eenpw+Q60vbmt2WEFHHvjd+BV5sB6/Ov9//etf6tixo3r37q3OnTurT58+2rt3b/XjRUVFGj169Bm343a7VVxc7LO43W7/owdqQWKrizQ/5x3NXfCmhtx0q56Y8rB2bLffuW7yADtzOAK3hCK/iv9DDz2klJQUHThwQFu2bFFUVJQuv/xy7dq1y6+dulwuxcTE+CzT/+byaxuB0KhhI4WHh9eYsFJYWKi4uLigx2MW8uCrTp0ItWjZSkkdkzVu/CS1ad9Bi9583eywgo488LvxKzvmIczhCNgSivwq/l988YVcLpfi4uLUtm1bffDBBxo4cKCuvPJKbd9+9kM/WVlZKioq8lkeeCjL7+DPV52ICHXslKy1a/Kr11VVVWnt2nylduka9HjMQh5Oz1NVpYqKcrPDMJ0d88Dvhhd5CB6Xy6Xu3bsrKipKTZs21ZAhQ7Rlyxaf51x11VU15hWMGzfOr/34dc6/tLRUF1xw4iUOh0Nz5szR+PHj1adPH+Xk5JzVdpxOp5xOp8+6sl/8iSRw7hg1Wo8+/JCSk1OU0jlVr7+2UKWlpRoydJg5AZmEPHi9OPNZpfW6UvEJzfTzzyVavvSf+rpgnZ554SWzQwsq8nACvxtedsuDWQ17Xl6eMjMz1b17d/3yyy96+OGHNWDAAH333XeqX79+9fPuvvtuPfbYY9U/16tXz6/9+FX8k5KStH79enXs2NFn/cyZMyVJN9xwg187DwXXDrpORw4f1uyZM3To0EF1SOqo2XPnKdaiQ1mnQh68jhw+rMezs1R46KDqN4hSm3bt9cwLL6l7Wq8zv9hCyMMJ/G542S0PZs3SX7p0qc/PCxYsUNOmTVVQUKDevXtXr69Xr54SEhLOeT8Oj8fjOdsnu1wuffrpp/roo49O+vi9996rF198UVVVVX4HYlbnj9B0rJQDAidE1eVK5PAVWcuHxM0LvgrYtl4fkVxjUvvJRsBPZuvWrWrXrp02b96slJQUSd5h/2+//VYej0cJCQkaPHiwHn30Ub+6f7+Kf22i+OO3KP74LYo/jH5PxT/53//Q1KlTfdZlZ2drypQpp31dVVWVbrjhBh09elSfffZZ9fqXXnpJrVq1UvPmzbVp0yY99NBD6tGjh959992zjonij5BE8cdvUfxhVNvF/9aFgbt40avDO51T53/PPfdoyZIl+uyzz9SiRYtTPm/lypXq16+ftm7dqjZt2pxVTPxGAQBgEMgz/mc7xP9b48eP14cffqjVq1eftvBLUs+ePSWJ4g8AwO+Rx+PRhAkTtHjxYq1atUqtW7c+42s2bNggSWrWrNlZ74fiDwCAgVmz/TMzM5WTk6P3339fUVFR2rdvnyQpJiZGdevW1bZt25STk6PrrrtOsbGx2rRpkyZNmqTevXsrNTX1rPdD8QcAwMCsu/HNmTNHkndG/2/Nnz9fd911lyIiIvTxxx/rueeeU0lJiVq2bKmMjAw98sgjfu2H4g8AQIg40xz8li1bKi8v77z3Q/EHAMAgVG/FGygUfwAADCxe+/27sQ8AAPj9o/MHAMCAYX8AAGzGrNn+wULxBwDAwOqdP+f8AQCwGTp/AAAMrN33U/wBAKghjGF/AABgJXT+AAAYWLzxp/gDAGDEbH8AAGApdP4AABhYvPGn+AMAYMRsfwAAYCl0/gAAGFi88af4AwBgZPXZ/iFT/I+V/mJ2CCEhqm7I/C8xFXnwatR9vNkhhIQj62aaHQJsxurnxK3+/gAAgAHtFQAABgz7AwBgM2HWrv0M+wMAYDd0/gAAGFi986f4AwBgYPVz/gz7AwBgM3T+AAAYMOwPAIDNWHzUn2F/AADshs4fAAADq9/Sl+IPAICB1YfFrf7+AADwm8MRuMUfLpdL3bt3V1RUlJo2baohQ4Zoy5YtPs8pKytTZmamYmNj1aBBA2VkZGj//v1+7YfiDwBAiMjLy1NmZqbWrFmj5cuXq6KiQgMGDFBJSUn1cyZNmqQPPvhAixYtUl5envbs2aNhw4b5tR+G/QEAMDDrnP/SpUt9fl6wYIGaNm2qgoIC9e7dW0VFRXrllVeUk5Ojvn37SpLmz5+vjh07as2aNUpLSzur/dD5AwBgEMhhf7fbreLiYp/F7XafVRxFRUWSpMaNG0uSCgoKVFFRof79+1c/JykpSYmJicrPzz/r90fxBwCgFrlcLsXExPgsLpfrjK+rqqrSxIkTdfnllyslJUWStG/fPkVERKhhw4Y+z42Pj9e+ffvOOiaG/QEAMAjkFf6ysrI0efJkn3VOp/OMr8vMzNQ333yjzz77LHDB/AfFHwAAg0Ce83c6nWdV7H9r/Pjx+vDDD7V69Wq1aNGien1CQoLKy8t19OhRn+5///79SkhIOOvtM+wPAECI8Hg8Gj9+vBYvXqyVK1eqdevWPo9369ZNderU0YoVK6rXbdmyRbt27VJ6evpZ74fOHwAAA7Mu8JeZmamcnBy9//77ioqKqj6PHxMTo7p16yomJkZjxozR5MmT1bhxY0VHR2vChAlKT08/65n+EsUfAIAazLqr35w5cyRJV111lc/6+fPn66677pIkPfvsswoLC1NGRobcbrcGDhyo2bNn+7Ufij8AACHC4/Gc8TmRkZGaNWuWZs2adc77ofgDAGDgEDf2AQDAVswa9g8WW8/2X/x2rkYNH6oBfXpoQJ8eGjv6NuV//qnZYZkmN+cNDbqmr7p37ayRw2/W5k2bzA7JNHbOxf2jr1Hp1zM1/f6Mkz7+3sx7VPr1TA2+KjXIkZnHzsfDb9kpD2GOwC2hyNbFv0nTeI0bP0mvvLZI8159S5de1lNZfxyv7du2mh1a0C1d8pGefsqlsfdmKnfRYnXokKR7xo5RYWGh2aEFnZ1z0a1TosZkXK5N/9p90scnjLxaZ3FK0lLsfDz8FnmwFlsX/yt6X630K3qrZWIrJba6SGMz71PdevX03eaNZocWdK8tnK9hN92iIUMz1KZtWz2SPVWRkZF67913zA4t6Oyai/p1IzT/ybt071/f1NHi0hqPp7a/UPfd0VfjprxuQnTmsevxYGS3PDgcjoAtocjWxf+3Kisr9fGyj1RWWqrk1C5mhxNUFeXl+v67b5WW3qt6XVhYmNLSemnTxq9NjCz47JyL57Ju1dJPv9Ena7fUeKxuZB0tcN2lidPe0v7CYyZEZw47Hw+/Zcc8WH3Y3+8Jf99//73WrFmj9PR0JSUl6YcfftDzzz8vt9ut22+/vfoWg6fjdrtr3NHIXR7u9+UPA2Hb1n9p3OjbVF5errp16+nJ6TPU+uK2QY/DTEeOHlFlZaViY2N91sfGxmrHju0mRWUOu+bi5oHddElSS11x+1MnffypP2ZozcYd+nDV5iBHZi67Hg9G5MF6/Or8ly5dqksuuUT333+/unbtqqVLl6p3797aunWrdu7cqQEDBmjlypVn3M7J7nD0/N//ds5v4nwktrpI83Pe0dwFb2rITbfqiSkPa8d2+53zh321iG+o6Q9kaPSfF8hd/kuNx6/v01lX9WivB6a/bUJ0gDkCeUvfUORX5//YY4/pgQce0OOPP67c3Fzddtttuueee/TEE09I8t65aNq0aWfs/k92h6Pi8nA/Qw+MOnUi1KJlK0lSUsdkff/dN1r05ut68M9TTInHDI0aNlJ4eHiNiTuFhYWKi4szKSpz2DEXXTsmKj42Wvk5D1Wvu+CCcF1xaRuNu7W3Xn77M13cIk77Vk/3ed2bT/+PPv96mwbe/XywQw4aOx4PJ2PHPATyxj6hyK/i/+233+rVV1+VJN1yyy264447dNNNN1U/PnLkSM2fP/+M2znZHY7cx2p2HGbwVFWpoqLc7DCCqk5EhDp2StbaNfnq26+/JO99pNeuzdfwEbebHF1w2TEXn3y5Rd1uesJn3UtTb9eWHfv19wXLVXj0uOa97XtL0YK3/6wH//6O/pn3TTBDDTo7Hg8nQx6sx+9z/r/OXAwLC1NkZKRiYmKqH4uKilJRUVHgoqtlL858Vmm9rlR8QjP9/HOJli/9p74uWKdnXnjJ7NCC7o5Ro/Xoww8pOTlFKZ1T9fprC1VaWqohQ4eZHVrQ2S0Xx39267tte33WlZSW63BRSfX6k03y+2nvEe3cY/2vednteDgVu+UhVCfqBYpfxf+iiy7Sjz/+qDZt2kiS8vPzlZiYWP34rl271KxZs8BGWIuOHD6sx7OzVHjooOo3iFKbdu31zAsvqXtarzO/2GKuHXSdjhw+rNkzZ+jQoYPqkNRRs+fOU6xFh/ROh1zgtzgevOyWB4uP+svhOZu7CPzHiy++qJYtW+r6668/6eMPP/ywDhw4oHnz5vkdyMEQGfY3W1RdrriMExp1H292CCHhyLqZZoeAEBNZy38qX/h8R8C2NeHy1gHbVqD4lb5x48ad9vEnn3zyvIIBACAUhHFjHwAA7MXqw/4UfwAADKw+4Y/L+wIAYDN0/gAAGHCRHwAAbMbitZ9hfwAA7IbOHwAAA4b9AQCwGYvXfob9AQCwGzp/AAAMrN4ZU/wBADBwWHzc3+ofbgAAgAGdPwAABtbu+yn+AADUwFf9AACwGWuXfs75AwBgO3T+AAAYWHzUn84fAAAjh8MRsMUfq1ev1uDBg9W8eXM5HA699957Po/fddddNbZ/7bXX+v3+KP4AAISIkpISdenSRbNmzTrlc6699lrt3bu3ennzzTf93g/D/gAAGJjVGQ8aNEiDBg067XOcTqcSEhLOaz90/gAAGARy2N/tdqu4uNhncbvd5xzbqlWr1LRpU3Xo0EH33HOPCgsL/d4GxR8AgFrkcrkUExPjs7hcrnPa1rXXXqtXX31VK1as0N/+9jfl5eVp0KBBqqys9Gs7DPsDAGAQyMn+WVlZmjx5ss86p9N5TtsaPnx49X937txZqampatOmjVatWqV+/fqd9XYo/gAAGATyxj5Op/Oci/2ZXHzxxYqLi9PWrVt/n8U/qm7IhAKEjCPrZpodQkg4VvqL2SGEBP5Owmj37t0qLCxUs2bN/HodRxIAAAZmTYg7fvy4tm7dWv3zjh07tGHDBjVu3FiNGzfW1KlTlZGRoYSEBG3btk0PPvig2rZtq4EDB/q1H4o/AAAGgRz298f69et19dVXV//861yBUaNGac6cOdq0aZMWLlyoo0ePqnnz5howYID++te/+n1aweHxeDwBjfwclTGqB+AUGPb3Ytj/hMhaTsV7m/YFbFtDUs/vO/m1ga/6AQBgM3yMBADAwOo39qH4AwBgEBbQb/qHHob9AQCwGTp/AAAMGPYHAMBmHAz7AwAAK6HzBwDAgGF/AABshtn+AADAUuj8AQAwYNgfAACbofgDAGAzfNUPAABYCp0/AAAGYdZu/Cn+AAAYMewPAAAshc4fAAADZvsDAGAzDPsDAABLofMHAMDA6rP96fwl5ea8oUHX9FX3rp01cvjN2rxpk9khmYI8nEAuvOyeh8Vv52rU8KEa0KeHBvTpobGjb1P+55+aHZZp7HQ8OAL4LxTZvvgvXfKRnn7KpbH3Zip30WJ16JCke8aOUWFhodmhBRV5OIFceJEHqUnTeI0bP0mvvLZI8159S5de1lNZfxyv7du2mh1a0HE8WIvti/9rC+dr2E23aMjQDLVp21aPZE9VZGSk3nv3HbNDCyrycAK58CIP0hW9r1b6Fb3VMrGVEltdpLGZ96luvXr6bvNGs0MLOrsdDw5H4JZQFJDi7/F4ArGZoKsoL9f3332rtPRe1evCwsKUltZLmzZ+bWJkwUUeTiAXXuShpsrKSn287COVlZYqObWL2eEElR2PB0cAl1AUkAl/TqdTGzduVMeOHQOxuaA5cvSIKisrFRsb67M+NjZWO3ZsNymq4CMPJ5ALL/Jwwrat/9K40bepvLxcdevW05PTZ6j1xW3NDiuo7Hg8hIVqyx4gfhX/yZMnn3R9ZWWlpk2bVn1gPPPMM6fdjtvtltvt9lnnCXfK6XT6Ew4A1LrEVhdpfs47On78uFat+P/1xJSH9cJLC2z3AQDW4lfxf+6559SlSxc1bNjQZ73H49H333+v+vXry3EWn5ZcLpemTp3qs+7Pj2brkb9M8Sec89aoYSOFh4fXmLBSWFiouLi4oMZiJvJwArnwIg8n1KkToRYtW0mSkjom6/vvvtGiN1/Xg3+eYm5gQWTH48Hafb+f5/yffPJJFRUV6dFHH9Unn3xSvYSHh2vBggX65JNPtHLlyjNuJysrS0VFRT7LAw9lnfObOFd1IiLUsVOy1q7Jr15XVVWltWvzldqla9DjMQt5OIFceJGHU/NUVamiotzsMILKlseDxU/6+9X5/+lPf1K/fv10++23a/DgwXK5XKpTp47fO3U6aw7xl/3i92YC4o5Ro/Xoww8pOTlFKZ1T9fprC1VaWqohQ4eZE5BJyMMJ5MKLPEgvznxWab2uVHxCM/38c4mWL/2nvi5Yp2deeMns0IKO48Fa/J7w1717dxUUFCgzM1OXXXaZ3njjjbMa6g9V1w66TkcOH9bsmTN06NBBdUjqqNlz5ynWokNZp0IeTiAXXuRBOnL4sB7PzlLhoYOq3yBKbdq11zMvvKTuab3O/GKLsdvxEKoX5wkUh+c8vqeXm5uriRMn6uDBg9q8ebM6dep0zoGY1fkDCH3HSvkDIUlRdbki+68iazkVX24vCti2elwcc9bPXb16taZPn66CggLt3btXixcv1pAhQ6of93g8ys7O1ssvv6yjR4/q8ssv15w5c9SuXTu/Yjqv7/kPHz5c69ev17vvvqtWrVqdz6YAALC9kpISdenSRbNmzTrp40899ZRmzJihF198UWvXrlX9+vU1cOBAlZWV+bWf8+r8A4nOH8Cp0Pl70fmfUNud/7oAdv7d/ej8f8vhcPh0/h6PR82bN9cf//hH3X///ZKkoqIixcfHa8GCBRo+fPhZb9v2l/cFAKCGAM72d7vdKi4u9lmM17o5Gzt27NC+ffvUv3//6nUxMTHq2bOn8vPzT/PKmij+AADUIpfLpZiYGJ/F5XL5vZ19+/ZJkuLj433Wx8fHVz92thhDAgDAIJCz/bOysmpcIdfsK9pS/AEAMAjkN9hPdm2bc5GQkCBJ2r9/v5o1a1a9fv/+/brkkkv82hbD/gAAGITiBf5at26thIQErVixonpdcXGx1q5dq/T0dL+2RecPAECIOH78uLZu3Vr9844dO7RhwwY1btxYiYmJmjhxoh5//HG1a9dOrVu31qOPPqrmzZv7XAvgbFD8AQAwMukCf+vXr9fVV19d/fOvcwVGjRqlBQsW6MEHH1RJSYn+8Ic/6OjRo7riiiu0dOlSRUZG+rUfvucPIOTxPX8vvud/Qm1/z//rnccCtq2uraICtq1A4Zw/AAA2w8dIAAAMfsf3qzsrFH8AAAwsXvsZ9gcAwG7o/AEAMLJ460/xBwDAIJCX9w1FDPsDAGAzdP4AABgw2x8AAJuxeO2n+AMAUIPFqz/n/AEAsBk6fwAADKw+25/iDwCAgdUn/DHsDwCAzdD5AwBgYPHGn+IPAEANFq/+FH8AIS+qLn+qJOlY6S9mhxAyIqM4Js4H2QMAwIDZ/gAA2Ayz/QEAgKXQ+QMAYGDxxp/iDwBADRav/hR/AAAMrD7hj3P+AADYDJ0/AAAGVp/tT/EHAMDA4rWfYX8AAOyGzh8AACOLt/4UfwAADJjtDwAALIXOHwAAA6vP9qfzBwDAwBHAxR9TpkyRw+HwWZKSkgLwjnzR+QMAEEKSk5P18ccfV/98wQWBL9UUfwAAjEwc9r/ggguUkJBQq/tg2B8AAANHAP+53W4VFxf7LG63+5T7/vHHH9W8eXNdfPHFGjlypHbt2hXw90fxBwDAwOEI3OJyuRQTE+OzuFyuk+63Z8+eWrBggZYuXao5c+Zox44duvLKK3Xs2LHAvj+Px+MJ6BbPUdkvZkcAAKHtWCl/KH/VJKp2z1rvOnzqztxf8fVVo9N3Op1yOp1nfO3Ro0fVqlUrPfPMMxozZkzAYuKcPwAABoE85X+2hf5kGjZsqPbt22vr1q0BjIhhfwAAagjksP/5OH78uLZt26ZmzZoF5o39B8UfAIAQcf/99ysvL0///ve/9cUXX2jo0KEKDw/XiBEjArofhv0BAKjBnO/67d69WyNGjFBhYaGaNGmiK664QmvWrFGTJk0Cuh86f0m5OW9o0DV91b1rZ40cfrM2b9pkdkimIA8nkAsv8uBl9zwsfjtXo4YP1YA+PTSgTw+NHX2b8j//1OywapVZw/65ubnas2eP3G63du/erdzcXLVp0ybg78/2xX/pko/09FMujb03U7mLFqtDhyTdM3aMCgsLzQ4tqMjDCeTCizx4kQepSdN4jRs/Sa+8tkjzXn1Ll17WU1l/HK/t2wI7CQ3BY/uv+o0cfrOSUzrr4Uf+IkmqqqrSgH59NOK2OzTm7j+YE5QJyMMJ5MKLPHiFUh5C6at+g/qmK/P/u1//NSTDlP3X9lf99hwtD9i2mjeMCNi2AsXWnX9Febm+/+5bpaX3ql4XFhamtLRe2rTxaxMjCy7ycAK58CIPXuShpsrKSn287COVlZYqObWL2eHUmlCZ7V9bzuujU0lJid566y1t3bpVzZo104gRIxQbG3vG17nd7hoXPPCEn/v3IM/VkaNHVFlZWSPm2NhY7dixPaixmIk8nEAuvMiDF3k4YdvWf2nc6NtUXl6uunXr6cnpM9T64rZmh4Vz5Ffn36lTJx0+fFiS9NNPPyklJUWTJk3S8uXLlZ2drU6dOmnHjh1n3M7JLnU4/W8nv9QhAMB8ia0u0vycdzR3wZsactOtemLKw9qx3brn/AN5bf9Q5Ffx/+GHH/TLL95zTllZWWrevLl27typL7/8Ujt37lRqaqr+/Oc/n3E7WVlZKioq8lkeeCjr3N7BeWjUsJHCw8NrTNwpLCxUXFxc0OMxC3k4gVx4kQcv8nBCnToRatGylZI6Jmvc+Elq076DFr35utlh1R5HAJcQdM7n/PPz8zVlyhTFxMRIkho0aKCpU6fqs88+O+NrnU6noqOjfZZgD/lLUp2ICHXslKy1a/Kr11VVVWnt2nylduka9HjMQh5OIBde5MGLPJyap6pKFRWBmxQXaixe+/0/5+/4z+yFsrKyGpcbvPDCC3Xw4MHARBYkd4warUcffkjJySlK6Zyq119bqNLSUg0ZOszs0IKKPJxALrzIgxd5kF6c+azSel2p+IRm+vnnEi1f+k99XbBOz7zwktmh4Rz5Xfz79eunCy64QMXFxdqyZYtSUlKqH9u5c+dZTfgLJdcOuk5HDh/W7JkzdOjQQXVI6qjZc+cp1mZDeuThBHLhRR68yIN05PBhPZ6dpcJDB1W/QZTatGuvZ154Sd3Tep35xb9ToTpLP1D8+p7/1KlTfX5OS0vTwIEDq39+4IEHtHv3br355pt+B8ItfQHg9ELpe/5mq+3v+R88Frhc13as58L2F/kBgN8Liv8JFP/zE3oRAQBgNosP+1P8AQAwsHjtt/flfQEAsCM6fwAADKw+25/iDwCAQaheljdQGPYHAMBm6PwBADCw+rA/nT8AADZD5w8AgAGdPwAAsBQ6fwAADKw+25/iDwCAAcP+AADAUuj8AQAwsHjjT/EHAKAGi1d/hv0BALAZOn8AAAyY7Q8AgM0w2x8AAFgKnT8AAAYWb/zp/AEAqMERwMVPs2bN0kUXXaTIyEj17NlTX3755fm+mxoo/gAAGDgC+M8f//u//6vJkycrOztbX331lbp06aKBAwfqwIEDgX1/Ho/HE9AtnqOyX8yOAABC27FS/lD+qklU7Z61Lq0I3Lbq1jn75/bs2VPdu3fXzJkzJUlVVVVq2bKlJkyYoD/96U8Bi4lz/gAAGARytr/b7Zbb7fZZ53Q65XQ6fdaVl5eroKBAWVlZ1evCwsLUv39/5efnBy4gSfLA4/F4PGVlZZ7s7GxPWVmZ2aGYijx4kQcv8uBFHrzIw7nJzs72SPJZsrOzazzv//7v/zySPF988YXP+gceeMDTo0ePgMYUMsP+ZisuLlZMTIyKiooUHR1tdjimIQ9e5MGLPHiRBy/ycG7OtvPfs2ePLrzwQn3xxRdKT0+vXv/ggw8qLy9Pa9euDVhMDPsDAFCLTlboTyYuLk7h4eHav3+/z/r9+/crISEhoDEx2x8AgBAQERGhbt26acWKFdXrqqqqtGLFCp+RgECg8wcAIERMnjxZo0aN0mWXXaYePXroueeeU0lJiUaPHh3Q/VD8/8PpdCo7O/ushmasjDx4kQcv8uBFHrzIQ+279dZbdfDgQf3lL3/Rvn37dMkll2jp0qWKj48P6H6Y8AcAgM1wzh8AAJuh+AMAYDMUfwAAbIbiDwCAzVD8FZzbJ4a61atXa/DgwWrevLkcDofee+89s0MyhcvlUvfu3RUVFaWmTZtqyJAh2rJli9lhBd2cOXOUmpqq6OhoRUdHKz09XUuWLDE7LNNNmzZNDodDEydONDuUoJoyZYocDofPkpSUZHZYOA+2L/7Bun1iqCspKVGXLl00a9Yss0MxVV5enjIzM7VmzRotX75cFRUVGjBggEpKSswOLahatGihadOmqaCgQOvXr1ffvn1144036ttvvzU7NNOsW7dOc+fOVWpqqtmhmCI5OVl79+6tXj777DOzQ8L5COidAn6HevTo4cnMzKz+ubKy0tO8eXOPy+UyMSpzSfIsXrzY7DBCwoEDBzySPHl5eWaHYrpGjRp55s2bZ3YYpjh27JinXbt2nuXLl3v69Onjue+++8wOKaiys7M9Xbp0MTsMBJCtO/9fb5/Yv3//6nW1dvtE/C4VFRVJkho3bmxyJOaprKxUbm6uSkpKAn6J0d+LzMxMXX/99T5/K+zmxx9/VPPmzXXxxRdr5MiR2rVrl9kh4TzY+gp/hw4dUmVlZY0rJ8XHx+uHH34wKSqEiqqqKk2cOFGXX365UlJSzA4n6DZv3qz09HSVlZWpQYMGWrx4sTp16mR2WEGXm5urr776SuvWrTM7FNP07NlTCxYsUIcOHbR3715NnTpVV155pb755htFRUWZHR7Oga2LP3A6mZmZ+uabb2x7brNDhw7asGGDioqK9Pbbb2vUqFHKy8uz1QeAn376Sffdd5+WL1+uyMhIs8MxzaBBg6r/OzU1VT179lSrVq301ltvacyYMSZGhnNl6+IfzNsn4vdl/Pjx+vDDD7V69Wq1aNHC7HBMERERobZt20qSunXrpnXr1un555/X3LlzTY4seAoKCnTgwAFdeuml1esqKyu1evVqzZw5U263W+Hh4SZGaI6GDRuqffv22rp1q9mh4BzZ+px/MG+fiN8Hj8ej8ePHa/HixVq5cqVat25tdkgho6qqSm632+wwgqpfv37avHmzNmzYUL1cdtllGjlypDZs2GDLwi9Jx48f17Zt29SsWTOzQ8E5snXnLwXv9omh7vjx4z6f4nfs2KENGzaocePGSkxMNDGy4MrMzFROTo7ef/99RUVFad++fZKkmJgY1a1b1+TogicrK0uDBg1SYmKijh07ppycHK1atUrLli0zO7SgioqKqjHfo379+oqNjbXVPJD7779fgwcPVqtWrbRnzx5lZ2crPDxcI0aMMDs0nCPbF/9g3T4x1K1fv15XX3119c+TJ0+WJI0aNUoLFiwwKargmzNnjiTpqquu8lk/f/583XXXXcEPyCQHDhzQnXfeqb179yomJkapqalatmyZrrnmGrNDgwl2796tESNGqLCwUE2aNNEVV1yhNWvWqEmTJmaHhnPELX0BALAZW5/zBwDAjij+AADYDMUfAACbofgDAGAzFH8AAGyG4g8AgM1Q/AEAsBmKPwAANkPxBwDAZij+AADYDMUfAACbofgDAGAz/w9OfUrYIzPdNQAAAABJRU5ErkJggg==", -======= "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAGdCAYAAACGtNCDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4IUlEQVR4nO3de3gU5dnH8d9ugA3FZAMBcpBTCgrhjIgQUFGJAloERSkaLSovIAYUooixHMSqi9QjIuChBaQg1VbQUsVSsFAlhJMcRECsVFRMgAAJhGSBZN8/tm6YSdREd3cS5vvhmusyz87O3ntfI9y5n2dmHD6fzycAAID/cVodAAAAqF4oDgAAgAHFAQAAMKA4AAAABhQHAADAgOIAAAAYUBwAAAADigMAAGBAcQAAAAxqWR3Ad2Z+uM/qEKqFkT2SrA4BAKq9yBD/61W3y5igHavo41lBO1a4VJviAACAasNh78a6vb89AAAoh84BAABmDofVEViK4gAAADObTytQHAAAYGbzzoG9SyMAAFAOnQMAAMyYVgAAAAZMKwAAAJShcwAAgBnTCgAAwIBpBQAAgDJ0DgAAMGNaAQAAGDCtAAAAUIbiAAAAM4czeFsVrF27VgMGDFBiYqIcDoeWLVsWeO306dOaOHGiOnTooHr16ikxMVG/+c1vdODAAcMxjhw5orS0NEVHRysmJkbDhw/XiRMnqhQHxQEAAGYOR/C2KigsLFSnTp304osvlnvt5MmT2rJliyZPnqwtW7borbfe0p49e3T99dcb9ktLS9POnTu1cuVKLV++XGvXrtXIkSOr9vV9Pp+vSu8IkZkf7rM6hGphZI8kq0MAgGovMsQr5upe/kjQjlW09qcdy+FwaOnSpRo0aND37rNx40Zdcskl+vLLL9WsWTPt2rVLbdu21caNG3XxxRdLklasWKFrr71WX3/9tRITEyv12XQOAAAIIa/Xq4KCAsPm9XqDcuz8/Hw5HA7FxMRIkrKyshQTExMoDCQpNTVVTqdT2dnZlT4uxQEAAGZBXHPg8XjkdrsNm8fj+dkhFhcXa+LEibrlllsUHR0tScrJyVHjxo0N+9WqVUsNGjRQTk5OpY/NpYwAAJg5g3cpY2ZmpjIyMgxjLpfrZx3z9OnTGjJkiHw+n+bMmfOzjlURigMAAELI5XL97GLgbN8VBl9++aVWr14d6BpIUnx8vA4ePGjY/8yZMzpy5Iji4+Mr/RlMKwAAYGbRpYw/5rvCYO/evfrnP/+p2NhYw+spKSk6duyYNm/eHBhbvXq1SktL1b1790p/Dp0DAADMLLpD4okTJ/T5558Hft63b5+2bt2qBg0aKCEhQTfddJO2bNmi5cuXq6SkJLCOoEGDBqpTp46Sk5PVr18/jRgxQnPnztXp06c1ZswYDR06tNJXKkg2Kw42vL1QG99ZZBiLiW+itMdfVfGJ49rw9kJ9tXOzjh85pLpRbiV1SVH3QcPk+kU9iyIOryWLF2nBvD/o8OFDurB1Gz308GR16NjR6rAsQS78yIMfefAjD6G3adMmXXnllYGfv1urMGzYMD3yyCN65513JEmdO3c2vO+DDz7QFVdcIUlatGiRxowZoz59+sjpdGrw4MGaOXNmleKwVXEgSQ0Sm+v6B8pWiTqdEZKkwmN5KjyWp55DRqhBYjMdzzuofy18QSePHVG/eyZZFW7YrHjvXT01w6NJU6epQ4dOWrRwgUaPGq63l68o17Y615ELP/LgRx78bJcHix68dMUVV+iHbj9UmVsTNWjQQIsXL/5ZcdhuzYEjIkL13A0CW90otyQptkkL9U+frKTOPeRunKgmyZ3V44Zh2rctW6UlJRZHHXoLF8zTjTcN0aAbBqtlq1aaNHWaIiMjteytv1odWtiRCz/y4Ece/GyXB4vukFhdVLlzcPjwYf3xj39UVlZWYK4jPj5ePXv21B133KFGjRoFPchgys/9RvMyblWt2nUU1zJZKYPvVFRs4wr3PVVUqDqRv5AzIiLMUYbX6VOntOvTnRo+YlRgzOl0qkePntq+7WMLIws/cuFHHvzIgx95sJ8qdQ42btyoCy+8UDNnzpTb7dbll1+uyy+/XG63WzNnzlSbNm20adOmHz1ORXeLOnMqOHeL+iFxv2yjPnfdrwHjH1Pv28fo+OEcvTX9AZ0qOllu36Lj+dr4t9fVrnf/kMdltaPHjqqkpKRcazA2NlaHDx+2KCprkAs/8uBHHvxsmYdqerVCuFSpczB27FjdfPPNmjt3rhymVonP59Pdd9+tsWPHKisr6weP4/F4NG3aNMNYvzvvVf+7xlUlnCpr3qFb2Q9Nf6m4X7bRaw/+Rp9vWqu2l/ULvHSqqFDLn5+iBonN1O3620IaEwCgGqqh0wHBUqXiYNu2bZo/f365wkDyPyBi/Pjx6tKly48ep6K7Rb266cD37B06rl+cp5i485V/sOyzTxWd1N+enaQ6kXXVf8wURdQ699ds1o+pr4iICOXl5RnG8/Ly1LBhQ4uisga58CMPfuTBz5Z5qKG/8QdLlb59fHy8NmzY8L2vb9iwQXFxcT96HJfLpejoaMNWq07w7h5VWaeKi5R/8Fv9wt3A/3NRod555mE5a9XStWMfUa3adcIekxVq16mj5LbtlL2+rONTWlqq7Owsdez048XeuYRc+JEHP/LgRx7sp0q/Fj/wwAMaOXKkNm/erD59+gQKgdzcXK1atUqvvPKKnnrqqZAEGgwf/fkVtejcXVGxjVV47Ig2vL1QDmeELux+xf8Kg9/qzKliXT3iQZ0qPqlTxf61CHWj3IFLHs9Vtw+7U5Mfnqh27dqrfYeO+tPCBSoqKtKgG260OrSwIxd+5MGPPPjZLg9MK1Reenq6GjZsqGeffVazZ89Wyf8u8YuIiFDXrl01f/58DRkyJCSBBsOJo4f1j5emq7jwuOpGuZXQqp1u+u2zqhsVo292b1PuF7slSX/KvMvwvtufnK/ohpW/J3VN1K//tTp65Ihmz5qpw4cPqXWbZM1+6VXFnqstwx9ALvzIgx958LNdHmw+reDwVeaOChU4ffp0YJVqw4YNVbt27Z8VyMwP9/2s958rRvZIsjoEAKj2IkO8HKzutc8H7VhF794XtGOFy09Ob+3atZWQkBDMWAAAqB6YVgAAAAY2n1aw97cHAADl0DkAAMDM5p0DigMAAMxsvubA3qURAAAoh84BAABmTCsAAAADm08rUBwAAGBm886Bvb89AAAoh84BAABmTCsAAICzOWxeHDCtAAAADOgcAABgYvfOAcUBAABm9q4NmFYAAABGdA4AADBhWgEAABjYvThgWgEAABjQOQAAwMTunQOKAwAATCgOAACAkb1rA9YcAAAAIzoHAACYMK0AAAAMKA6qiZE9kqwOoVrY+XWB1SFUC+2aRFsdAgDYVrUpDgAAqC7oHAAAAAO7FwdcrQAAAAzoHAAAYGbvxgHFAQAAZkwrAAAAnIXOAQAAJnbvHFAcAABgQnEAAACM7F0bsOYAAAAY0TkAAMCEaQUAAGBg9+KAaQUAAKqJtWvXasCAAUpMTJTD4dCyZcsMr/t8Pk2ZMkUJCQmqW7euUlNTtXfvXsM+R44cUVpamqKjoxUTE6Phw4frxIkTVYqD4gAAABOHwxG0rSoKCwvVqVMnvfjiixW+PmPGDM2cOVNz585Vdna26tWrp759+6q4uDiwT1pamnbu3KmVK1dq+fLlWrt2rUaOHFm17+/z+XxVekeIFJ+xOoLqgUc2+/HIZgA/JDLEk+KJo94K2rEOvHTjT3qfw+HQ0qVLNWjQIEn+rkFiYqLuv/9+PfDAA5Kk/Px8xcXFaf78+Ro6dKh27dqltm3bauPGjbr44oslSStWrNC1116rr7/+WomJiZX6bDoHAACEkNfrVUFBgWHzer1VPs6+ffuUk5Oj1NTUwJjb7Vb37t2VlZUlScrKylJMTEygMJCk1NRUOZ1OZWdnV/qzKA4AADBzBG/zeDxyu92GzePxVDmknJwcSVJcXJxhPC4uLvBaTk6OGjdubHi9Vq1aatCgQWCfyuBqBQAATIJ5tUJmZqYyMjIMYy6XK2jHDwWKAwAAQsjlcgWlGIiPj5ck5ebmKiEhITCem5urzp07B/Y5ePCg4X1nzpzRkSNHAu+vDKYVAAAwsepqhR+SlJSk+Ph4rVq1KjBWUFCg7OxspaSkSJJSUlJ07Ngxbd68ObDP6tWrVVpaqu7du1f6s+gcAABgYtVNkE6cOKHPP/888PO+ffu0detWNWjQQM2aNdO4ceP02GOP6YILLlBSUpImT56sxMTEwBUNycnJ6tevn0aMGKG5c+fq9OnTGjNmjIYOHVrpKxUkigMAAMqz6AaJmzZt0pVXXhn4+bu1CsOGDdP8+fP14IMPqrCwUCNHjtSxY8d06aWXasWKFYqMjAy8Z9GiRRozZoz69Okjp9OpwYMHa+bMmVWKg/scVDPc58CP+xwA+CGhvs9B0zFvB+1YX80aGLRjhQudAwAATHi2ArRk8SL1v/oqdevSQWlDb9aO7dutDimk3l4yT5PG/kZ3Deqtu4dco6cfeUAHvvqvYZ9jRw5r9owpGj20r+68/jI9nH6bNvx7tTUBW8Bu58T3IQ9+5MHPTnmojgsSw8n2xcGK997VUzM8GnVPupa8uVStW7fR6FHDlZeXZ3VoIbNr+xZdPeBmPfrcH5XpmaWSkjOa/vBYFRcXBfaZ8/tHdOCrL3X/I89o+kuvq1uvK/X8E5n67+d7LIw8POx4TlSEPPiRBz/yYC+2Lw4WLpinG28aokE3DFbLVq00aeo0RUZGatlbf7U6tJB56IkX1PuaAWrSoqWat7xQd98/VYcP5mjf3l2BfT77dLv6Dvy1WrVpp7iEJrrh1uGqVy/KsM+5yo7nREXIgx958LNbHugc2NjpU6e069Od6pHSMzDmdDrVo0dPbd/2sYWRhdfJQv+jPM+LKlsEeGHbjlq/ZqVOFOSrtLRU6/71D50+5VVyx65WhRkWnBN+5MGPPPjZMQ8UBzZ29NhRlZSUKDY21jAeGxurw4cPWxRVeJWWlmrh3Gd0YbtOatqiVWD83t96dKbkjEbenKphv+qpPzz/hMZP/b3iz29qYbShxznhRx78yIMfebCfoBcHX331le66664f3CdYT6jCzzdv1gx99eV/NDbzccP4mwvm6uSJ43p4+ot67IXXdO3gNM18PFP7933+PUcCgHNIEB+8VBMFvTg4cuSIFixY8IP7VPSEqt8/WfUnVP1c9WPqKyIiotyCmry8PDVs2DDs8YTbvFkz9HH2vzVpxhzFNip7ylfuga/1j3fe0KiMyWrf5RI1b3mhBt82QkkXJGvlO29aGHHo2f2c+A558CMPfnbMg92nFap8n4N33nnnB1//4osvfvQYFT2hyhcR/idU1a5TR8lt2yl7fZau6uN/PnZpaamys7M09Jbbwh5PuPh8Ps1/8ffatO5fmvT7uWocf77hda+3WJLkcBprR2dEhEp9pWGL0wp2PSfMyIMfefAjD/ZT5eJg0KBBcjgc+qEbK/5YpVTRE6qsukPi7cPu1OSHJ6pdu/Zq36Gj/rRwgYqKijTohhutCSgM5s16Uus+eF/3P/KU6tb9hY4d8c8Z/qLeearjilRi0xaKS2yqPzzv0a0j7lNUtFub1v1Ln2zJ1gOPPmtx9KFnx3OiIuTBjzz42S0PNfU3/mCpcnGQkJCg2bNna+DAim8HuXXrVnXtWnNWtPfrf62OHjmi2bNm6vDhQ2rdJlmzX3pVsedoq0yS/rncf+nR7ybcbRgfdf8U9b5mgGrVqqUHH3tOS/4wS09NzZC36KTiEpvq7gceUZdLelkRcljZ8ZyoCHnwIw9+dsuDzWuDqj9b4frrr1fnzp316KOPVvj6tm3b1KVLF5WWVq39zLMV/Hi2gh/PVgDwQ0L9bIULJqwI2rH2/r5f0I4VLlVO74QJE1RYWPi9r7dq1UoffPDBzwoKAABYp8rFwWWXXfaDr9erV0+9e/f+yQEBAGA1u08r8FRGAABM7L4g0dZ3SAQAAOXROQAAwMTmjQOKAwAAzJxOe1cHTCsAAAADOgcAAJgwrQAAAAy4WgEAAOAsdA4AADCxeeOA4gAAADO7TytQHAAAYGL34oA1BwAAwIDOAQAAJjZvHFAcAABgxrQCAADAWegcAABgYvPGAcUBAABmTCsAAACchc4BAAAmNm8cUBwAAGDGtAIAAMBZ6BwAAGBi88YBxQEAAGZ2n1agOAAAwMTmtQHFQXXTrkm01SFUC98eK7Y6hGohISbS6hAA2BDFAQAAJkwrAAAAA5vXBlzKCAAAjOgcAABgwrQCAAAwsHltwLQCAAAwonMAAIAJ0woAAMDA7sUB0woAAFQTJSUlmjx5spKSklS3bl21bNlSv/vd7+Tz+QL7+Hw+TZkyRQkJCapbt65SU1O1d+/eoMZBcQAAgInDEbytKp588knNmTNHs2bN0q5du/Tkk09qxowZeuGFFwL7zJgxQzNnztTcuXOVnZ2tevXqqW/fviouDt6dZZlWAADAxKpphXXr1mngwIG67rrrJEktWrTQ66+/rg0bNkjydw2ee+45TZo0SQMHDpQkvfbaa4qLi9OyZcs0dOjQoMRB5wAAAJNgdg68Xq8KCgoMm9frrfBze/bsqVWrVumzzz6TJG3btk0ffvih+vfvL0nat2+fcnJylJqaGniP2+1W9+7dlZWVFbTvT3EAAEAIeTweud1uw+bxeCrc96GHHtLQoUPVpk0b1a5dW126dNG4ceOUlpYmScrJyZEkxcXFGd4XFxcXeC0YmFYAAMAkmNMKmZmZysjIMIy5XK4K933jjTe0aNEiLV68WO3atdPWrVs1btw4JSYmatiwYUGL6cdQHAAAYBLMJQcul+t7iwGzCRMmBLoHktShQwd9+eWX8ng8GjZsmOLj4yVJubm5SkhICLwvNzdXnTt3DlrMTCsAAFBNnDx5Uk6n8Z/miIgIlZaWSpKSkpIUHx+vVatWBV4vKChQdna2UlJSghYHnQMAAEycFl2tMGDAAD3++ONq1qyZ2rVrp48//ljPPPOM7rrrLkn+6Y5x48bpscce0wUXXKCkpCRNnjxZiYmJGjRoUNDioDgAAMDEqhskvvDCC5o8ebLuueceHTx4UImJiRo1apSmTJkS2OfBBx9UYWGhRo4cqWPHjunSSy/VihUrFBkZGbQ4HL6zb7tkoeIzVkeA6uTbY8G7mUdNlhATvP/ZgXNJZIh/tb3mxfVBO9Y/0nsE7VjhQucAAAATuz9bgeIAAAATp71rA4oDAADM7N454FJGAABgQOcAAAATmzcO6BxI0pLFi9T/6qvUrUsHpQ29WTu2b7c6JEvYMQ87tm7W1AfH6tbrU9WvVyetW7u63D77//uFpj54r268ppcG9umuscNv1cGcby2INvzseE5UhDz42SkPjiD+qYlsXxyseO9dPTXDo1H3pGvJm0vVunUbjR41XHl5eVaHFlZ2zUNxUZGSWrVW+v2ZFb5+4OuvdP/oO9S0eZJmzHpVcxb8RbfeMVJ1XHXCHGn42fWcMCMPfuTBXmxfHCxcME833jREg24YrJatWmnS1GmKjIzUsrf+anVoYWXXPHRLuVR3jByjXr37VPj6gpdfULeUS/V/6ePV6sJkJTZpqpTLrlBM/dgwRxp+dj0nzMiDn93y4HQEb6uJbF0cnD51Srs+3akeKT0DY06nUz169NT2bR9bGFl4kYeKlZaWasO6f+v8ps318Pi79evrrtB9I9IqnHo413BO+JEHPzvmweFwBG2riapcHBQVFenDDz/Up59+Wu614uJivfbaa0EJLByOHjuqkpISxcYafwuMjY3V4cOHLYoq/MhDxY4dPaKiopN6409/1MXde+mJZ+eq5+VX6XcPZ2j7x5usDi+kOCf8yIMfebCfKhUHn332mZKTk3X55ZerQ4cO6t27t779tmxhVn5+vu68884fPY7X61VBQYFh83q9VY8eCCHf/56ClnLZlbpx6O1qeWEb/fr24bqk5+X6+7I3LY4OQCg5HMHbaqIqFQcTJ05U+/btdfDgQe3Zs0dRUVHq1auX9u/fX6UP9Xg8crvdhu33T3qqdIxgqB9TXxEREeUW1OTl5alhw4Zhj8cq5KFi0TH1FRFRS81a/NIw3qxFkg7l5lgUVXhwTviRBz875sHpcARtq4mqVBysW7dOHo9HDRs2VKtWrfS3v/1Nffv21WWXXaYvvvii0sfJzMxUfn6+YZswseLV4qFUu04dJbdtp+z1WYGx0tJSZWdnqWOnLmGPxyrkoWK1a9fWhcnt9PX+/xrGv/nqSzWOT7AmqDDhnPAjD37kwX6qdBOkoqIi1apV9haHw6E5c+ZozJgx6t27txYvXlyp47hcLrlcLsOYVU9lvH3YnZr88ES1a9de7Tt01J8WLlBRUZEG3XCjNQFZxK55KDp5Uge+Lut85Rz4Rv/5bLeiot1qHJ+gm24dJs+UB9Whc1d1uqibNq3/SOs/WqsZL7xqYdThYddzwow8+NktDzX0F/6gqVJx0KZNG23atEnJycmG8VmzZkmSrr/++uBFFib9+l+ro0eOaPasmTp8+JBat0nW7JdeVew52ir7PnbNw2e7d2ri2P8L/PzyC09JklL7X68HJv1OvXr30dgJk/TnhX/UnGefVJNmLTT58afVvtNFVoUcNnY9J8zIg5/d8lBTrzIIFofP5/NVdmePx6N///vfevfddyt8/Z577tHcuXNV+r+FXFVhVecA1dO3x4qtDqFaSIiJtDoEoFqKDPHN/2+evyVox3rzjpr3y0SVioNQojjA2SgO/CgOgIpRHIQWD14CAMCkpl5lECwUBwAAmNi7NLD57ZMBAEB5dA4AADCx+9UKFAcAAJjU1KcpBgvTCgAAwIDOAQAAJkwrAAAAA5vXBkwrAAAAIzoHAACYMK0AAAAM7H61AsUBAAAmdu8csOYAAAAY0DkAAMDE3n0DigMAAMqx+1MZmVYAAAAGdA4AADCxeeOA4gAAADOuVgAAADgLnQMAAExs3jigOAAAwIyrFQAAAM5C5wAAABObNw4oDgAAMLP71QoUB6iWEmIirQ6hWqjfbYzVIVQLRzfOsjoE2Izd59zt/v0BAIAJnQMAAEyYVgAAAAZOe9cGTCsAAAAjOgcAAJjQOQAAAAYOhyNoW1V98803uu222xQbG6u6deuqQ4cO2rRpU+B1n8+nKVOmKCEhQXXr1lVqaqr27t0bzK9PcQAAQHVx9OhR9erVS7Vr19Z7772nTz/9VE8//bTq168f2GfGjBmaOXOm5s6dq+zsbNWrV099+/ZVcXFx0OJgWgEAABOrphWefPJJNW3aVPPmzQuMJSUlBf7b5/Ppueee06RJkzRw4EBJ0muvvaa4uDgtW7ZMQ4cODUocdA4AADBxOIK3VcU777yjiy++WDfffLMaN26sLl266JVXXgm8vm/fPuXk5Cg1NTUw5na71b17d2VlZQXr61McAAAQSl6vVwUFBYbN6/VWuO8XX3yhOXPm6IILLtD777+v0aNH695779WCBQskSTk5OZKkuLg4w/vi4uICrwUDxQEAACZOhyNom8fjkdvtNmwej6fCzy0tLdVFF12kJ554Ql26dNHIkSM1YsQIzZ07N7zfP6yfBgBADeAM4paZman8/HzDlpmZWeHnJiQkqG3btoax5ORk7d+/X5IUHx8vScrNzTXsk5ubG3gtGCgOAAAwCeaaA5fLpejoaMPmcrkq/NxevXppz549hrHPPvtMzZs3l+RfnBgfH69Vq1YFXi8oKFB2drZSUlKC9v25WgEAgGpi/Pjx6tmzp5544gkNGTJEGzZs0Msvv6yXX35Zkv/+C+PGjdNjjz2mCy64QElJSZo8ebISExM1aNCgoMVBcQAAgInTogcvdevWTUuXLlVmZqYeffRRJSUl6bnnnlNaWlpgnwcffFCFhYUaOXKkjh07pksvvVQrVqxQZGTwHnXv8Pl8vqAd7WcoPmN1BED1U7/bGKtDqBaObpxldQioZiJD/KvtlPeDd8fBR/teELRjhQtrDgAAgAHTCgAAmNj9wUsUBwAAmFi15qC6YFoBAAAY0DkAAMDE5o0DigMAAMzsvuaAaQUAAGBA5wAAABOH7N06oDgAAMCEaQVoyeJF6n/1VerWpYPSht6sHdu3Wx2SJchDmXM9F70uaqm/PDdKX/zjcRV9PEsDrugYeK1WLaceu3egNr7xsA6ve1pf/ONxvfq725XQyB3Y57KuF6jo41kVbl3bNrPiK4XUuX4+VJad8uB0BG+riWxfHKx47109NcOjUfeka8mbS9W6dRuNHjVceXl5VocWVuShjB1yUa+uSzs++0bjPH8u99ovIuuoc3JTTX/lPaXc8qSG3v+KLmwepzefGxXYZ/22L9QiNdOw/fGtj7Tv68Pa/On+cH6VkLPD+VAZ5MFebF8cLFwwTzfeNESDbhislq1aadLUaYqMjNSyt/5qdWhhRR7K2CEX//joU02bvVzvfFD+N7+CE8X61ehZ+uvKj7X3y4PasOO/Gj/9DXVt20xN4+tLkk6fKVFu3vHAlpdfqF9d0VGvvbM+3F8l5OxwPlSG3fLgcDiCttVEti4OTp86pV2f7lSPlJ6BMafTqR49emr7to8tjCy8yEMZclGx6Ki6Ki0t1bHjRRW+/qveHRXrrqeFb59bxQHng58d88C0QhXt2rVL8+bN0+7duyVJu3fv1ujRo3XXXXdp9erVlTqG1+tVQUGBYfN6vVUN5Wc7euyoSkpKFBsbaxiPjY3V4cOHwx6PVchDGXJRnqtOLT1270C9sWKzjhcWV7jPsEEpWpm1S98cPBbe4EKM88GPPNhPlYqDFStWqHPnznrggQfUpUsXrVixQpdffrk+//xzffnll7rmmmsqVSB4PB653W7D9vsnPT/5SwAIjVq1nPrTjOFyOBy694ny6xMk6fzGMbo6JVkLlmWFOTogdByO4G01UZWKg0cffVQTJkxQXl6e5s2bp1tvvVUjRozQypUrtWrVKk2YMEHTp0//0eNkZmYqPz/fsE2YmPmTv8RPVT+mviIiIsotqMnLy1PDhg3DHo9VyEMZclGmVi2nFj05XM0S6utXo2d9b9fg9oE9lJdfqOVrzr2V65wPfnbMg9PhCNpWE1WpONi5c6fuuOMOSdKQIUN0/Phx3XTTTYHX09LStL0Sl7a4XC5FR0cbNpfLVbXIg6B2nTpKbttO2evLfuMpLS1VdnaWOnbqEvZ4rEIeypALv+8Kg5bNGum6u2fpSH7h9+77m+t7aPHyDTpzpjSMEYYH54MfebCfKt8E6buVl06nU5GRkXK7y659joqKUn5+fvCiC4Pbh92pyQ9PVLt27dW+Q0f9aeECFRUVadANN1odWliRhzJ2yEW9unXUsmmjwM8tzo9VxwvP19GCk/r2cL4W//7/1KVNU91431xFOB2Ki42SJB3JP6nTZ0oC77vikguV1KSh5i1dF/bvEC52OB8qw255qKkLCYOlSsVBixYttHfvXrVs2VKSlJWVpWbNym54sn//fiUkJAQ3whDr1/9aHT1yRLNnzdThw4fUuk2yZr/0qmLP0VbZ9yEPZeyQi4vaNtc/Xr0v8POMBwZLkha+s16PzX03cFOkDX82Tvdd83/P69+b9wZ+vmNQT2Vt/Y8++29uGKK2hh3Oh8qwWx5q6GxA0Dh8Pp+vsjvPnTtXTZs21XXXXVfh6w8//LAOHjyoV199tcqBFJ+p8luAc179bmOsDqFaOLpxltUhoJqJDPHN/1/4aF/QjjW2V1LQjhUuVUrv3Xff/YOvP/HEEz8rGAAAqgMnD14CAABns/u0AsUBAAAmdl+QaOvbJwMAgPLoHAAAYFJTb14ULBQHAACY2Lw2YFoBAAAY0TkAAMCEaQUAAGBg89qAaQUAAGBE5wAAABO7/+ZMcQAAgInD5vMKdi+OAACACZ0DAABM7N03oDgAAKAcLmUEAAAG9i4NWHMAAABM6BwAAGBi81kFigMAAMy4lBEAAOAsdA4AADCx+2/OFAcAAJgwrQAAAHAWOgcAAJjYu29AcQAAQDl2n1agOACqsaMbZ1kdQrVwvPiM1SFUC1GR/JWN8OBMAwDAxO4L8igOAAAwsfu0gt2LIwAAynEEcfuppk+fLofDoXHjxgXGiouLlZ6ertjYWJ133nkaPHiwcnNzf8anVIziAACAambjxo166aWX1LFjR8P4+PHj9be//U1vvvmm1qxZowMHDujGG28M+udTHAAAYOJwBG+rqhMnTigtLU2vvPKK6tevHxjPz8/XH/7wBz3zzDO66qqr1LVrV82bN0/r1q3T+vXrg/jtKQ4AACjHKUfQNq/Xq4KCAsPm9Xq/97PT09N13XXXKTU11TC+efNmnT592jDepk0bNWvWTFlZWUH+/gAAIGQ8Ho/cbrdh83g8Fe67ZMkSbdmypcLXc3JyVKdOHcXExBjG4+LilJOTE9SYuVoBAACTYF6skJmZqYyMDMOYy+Uqt99XX32l++67TytXrlRkZGTwAvgJKA4AADBxBPEGyi6Xq8JiwGzz5s06ePCgLrroosBYSUmJ1q5dq1mzZun999/XqVOndOzYMUP3IDc3V/Hx8UGLV6I4AACgWujTp4927NhhGLvzzjvVpk0bTZw4UU2bNlXt2rW1atUqDR48WJK0Z88e7d+/XykpKUGNheIAAAATK+6BFBUVpfbt2xvG6tWrp9jY2MD48OHDlZGRoQYNGig6Olpjx45VSkqKevToEdRYKA4AADBxVtPnMj777LNyOp0aPHiwvF6v+vbtq9mzZwf9cxw+n88X9KP+BDxXBcD34cFLfjx4qUyoU7Fi56GgHatfu0ZBO1a4cKYBAGBi80crUBwAAGBGcQAAAAyCeSljTcQdEgEAgAGdAwAATJz2bhxQHAAAYMa0AgAAwFnoHAAAYMLVCgAAwIBpBQAAgLPQOQAAwMTuVyvQOZC0ZPEi9b/6KnXr0kFpQ2/Wju3brQ7JEuShDLnws3seSkpK9Mrsmbp5wDW6qudFGnJ9P81/ZY6qySNpws5O54MjiH9qItsXByvee1dPzfBo1D3pWvLmUrVu3UajRw1XXl6e1aGFFXkoQy78yIO0aMEftOwvf9b4B3+rRX/5m0bfO16LXvuj/rJkkdWhhR3ng73YvjhYuGCebrxpiAbdMFgtW7XSpKnTFBkZqWVv/dXq0MKKPJQhF37kQfpk21ZdesVV6nlZbyUknq8rU/vqkh49tWvnDqtDCzu7nQ8OR/C2migoxUFNbbGdPnVKuz7dqR4pPQNjTqdTPXr01PZtH1sYWXiRhzLkwo88+LXv1FmbN6zX/i//K0na+9lubd/6sXr0vMzawMLMjueDI4hbTRSUBYkul0vbtm1TcnJyMA4XNkePHVVJSYliY2MN47Gxsdq37wuLogo/8lCGXPiRB7/b7vg/FZ44obTBv5LTGaHS0hKNvOc+XXPtr6wOLazseD44a+qv/EFSpeIgIyOjwvGSkhJNnz49cOI888wzP3gcr9crr9drGPNFuORyuaoSDgCE1OqVK7Ryxd819fEZSvplK+39bLdmPj1dDRs1Uv8Bg6wODwiZKhUHzz33nDp16qSYmBjDuM/n065du1SvXj05KlFteTweTZs2zTD228lTNWnKI1UJ52erH1NfERER5RbU5OXlqWHDhmGNxUrkoQy58CMPfrOff1ppdwxXat9rJUktL7hQOd8e0MJ5r9qqOLDj+WDvvkEV1xw88cQTys/P1+TJk/XBBx8EtoiICM2fP18ffPCBVq9e/aPHyczMVH5+vmGbMDHzJ3+Jn6p2nTpKbttO2euzAmOlpaXKzs5Sx05dwh6PVchDGXLhRx78iouL5HQY/5qMcEao1FdqUUTWsOX5YPNFB1XqHDz00EPq06ePbrvtNg0YMEAej0e1a9eu8oe6XOWnEIrPVPkwQXH7sDs1+eGJateuvdp36Kg/LVygoqIiDbrhRmsCsgh5KEMu/MiD1OuyK/TaH19WXHyCklq20me7d+nPixbo2oE3WB1a2HE+2EuVFyR269ZNmzdvVnp6ui6++GItWrSoUlMJ1VW//tfq6JEjmj1rpg4fPqTWbZI1+6VXFXuOtsq+D3koQy78yIM0/sHf6pU5M/X09N/p6NEjatiwsa4ffLPuHDHa6tDCzm7nQ029eVGwOHw/4zrEJUuWaNy4cTp06JB27Nihtm3b/uRArOocAKj+jvMXhCQpKpI73n8n1KnY8EV+0I51yS/dQTtWuPys9A4dOlSXXnqpNm/erObNmwcrJgAAYKGfXXs1adJETZo0CUYsAABUC/aeVOCpjAAAlGfz6sD2z1YAAABGdA4AADCx+9UKFAcAAJjU4Cv0g4LiAAAAE5vXBqw5AAAARnQOAAAws3nrgOIAAAATuy9IZFoBAAAY0DkAAMCEqxUAAICBzWsDphUAAIARnQMAAMxs3jqgOAAAwISrFQAAAM5C5wAAABOuVgAAAAY2rw0oDgAAKMfm1QFrDgAAgAGdAwAATOx+tQLFAQAAJnZfkMi0AgAAMKBzAACAic0bB3QOAAAoxxHErQo8Ho+6deumqKgoNW7cWIMGDdKePXsM+xQXFys9PV2xsbE677zzNHjwYOXm5v7kr1oRh8/n8wX1iD9R8RmrIwCA6q2g6LTVIVQbjaNqh/T4u74tDNqxkhPqVXrffv36aejQoerWrZvOnDmjhx9+WJ988ok+/fRT1avnP87o0aP197//XfPnz5fb7daYMWPkdDr10UcfBS1migMAqCEoDsqEujjY/e3JoB2rTcIvfvJ7Dx06pMaNG2vNmjW6/PLLlZ+fr0aNGmnx4sW66aabJEm7d+9WcnKysrKy1KNHj6DEzLQCAAAmDkfwNq/Xq4KCAsPm9XorFUd+fr4kqUGDBpKkzZs36/Tp00pNTQ3s06ZNGzVr1kxZWVlB+/4UBwAAhJDH45Hb7TZsHo/nR99XWlqqcePGqVevXmrfvr0kKScnR3Xq1FFMTIxh37i4OOXk5AQtZq5WAADAJJhXK2RmZiojI8Mw5nK5fvR96enp+uSTT/Thhx8GMZrKoTgAAMAsiNWBy+WqVDFwtjFjxmj58uVau3atmjRpEhiPj4/XqVOndOzYMUP3IDc3V/Hx8cEKmWkFAADMHEH8UxU+n09jxozR0qVLtXr1aiUlJRle79q1q2rXrq1Vq1YFxvbs2aP9+/crJSUlKN9donMAAEC1kZ6ersWLF+vtt99WVFRUYB2B2+1W3bp15Xa7NXz4cGVkZKhBgwaKjo7W2LFjlZKSErQrFSQuZQSAGoNLGcuE+lLGzw8WBe1YrRrXrfS+ju95qMO8efN0xx13SPLfBOn+++/X66+/Lq/Xq759+2r27NlBnVagOACAGoLioEyoi4P/BLE4aFmF4qC6YM0BAAAwYM0BAABmNn/yEsUBAAAmVb3K4FzDtAIAADCgcwAAgMn3XDRgGxQHAACY2Lw2YFoBAAAY0TkAAMDM5q0DigMAAEzsfrUCxQEAACZ2X5DImgMAAGBA5wAAABObNw4oDgAAMGNaAQAA4Cx0DgAAKMferQM6B5KWLF6k/ldfpW5dOiht6M3asX271SFZgjyUIRd+5MGPPEgnCws18+npuulXV6tPr64afVeadu3cYXVYIeNwBG+riWxfHKx47109NcOjUfeka8mbS9W6dRuNHjVceXl5VocWVuShDLnwIw9+5MHvycemaGN2liY96tGCJUvVrXtPjb9nhA4dzLU6NISA7YuDhQvm6cabhmjQDYPVslUrTZo6TZGRkVr21l+tDi2syEMZcuFHHvzIg+QtLtaa1f/U6Hsz1Pmii9WkaTPdNSpd5zdtpmV/+bPV4YWEI4hbTWTr4uD0qVPa9elO9UjpGRhzOp3q0aOntm/72MLIwos8lCEXfuTBjzz4lZSUqKSkRHXquAzjLpdL27dusSiq0LL7tMLPWpBYWFioN954Q59//rkSEhJ0yy23KDY29kff5/V65fV6DWO+CJdcLtf3vCM0jh47qpKSknIxx8bGat++L8Iai5XIQxly4Uce/MiD3y/q1VP7jp204NW5apH0S9VvEKt/vv+udu7YpvObNLM6PIRAlToHbdu21ZEjRyRJX331ldq3b6/x48dr5cqVmjp1qtq2bat9+/b96HE8Ho/cbrdh+/2Tnp/2DQAAITfpUY98km7of5X69LxIf12ySH369pfTWUN/Nf4RjiD+qYmq1DnYvXu3zpw5I0nKzMxUYmKitm7dKrfbrRMnTuiGG27Qb3/7Wy1evPgHj5OZmamMjAzDmC8ivF0DSaofU18RERHlFhbl5eWpYcOGYY/HKuShDLnwIw9+5KHM+U2aadbL81VUdFKFhYVq2LCRpmber4Tzm1gdWmjUzH/Tg+YnrznIysrSI488IrfbLUk677zzNG3aNH344Yc/+l6Xy6Xo6GjDFu4pBUmqXaeOktu2U/b6rMBYaWmpsrOz1LFTl7DHYxXyUIZc+JEHP/JQXt26v1DDho10vCBfG7LW6bLeV1kdUkjYfUFildccOP63uqK4uFgJCQmG184//3wdOnQoOJGFye3D7tTkhyeqXbv2at+ho/60cIGKioo06IYbrQ4trMhDGXLhRx78yINfdtZHks+nps1b6Juv9mv2zKfVrEWSrr1+kNWhIQSqXBz06dNHtWrVUkFBgfbs2aP27dsHXvvyyy8rtSCxOunX/1odPXJEs2fN1OHDh9S6TbJmv/SqYm3WMiQPZciFH3nwIw9+hSeO66VZz+nQwVxFRbt1xVVXa0T6vapVq7bVoYVETb3KIFgcPp/PV9mdp02bZvi5R48e6tu3b+DnCRMm6Ouvv9brr79e5UCKz1T5LQBgKwVFp60OodpoHBXaouTQ8eD9o9QoquY9qaBKxUEoURwAwA+jOChDcRBaNS9iAABCzebTChQHAACY2Lw2sPftkwEAQHl0DgAAMLH71QoUBwAAmNTU2x4HC9MKAADAgM4BAAAmdp9WoHMAAAAM6BwAAGBC5wAAAOAsdA4AADCx+9UKFAcAAJgwrQAAAHAWOgcAAJjYvHFAcQAAQDk2rw6YVgAAAAZ0DgAAMOFqBQAAYMDVCgAAAGehcwAAgInNGwd0DgAAKMcRxK2KXnzxRbVo0UKRkZHq3r27NmzY8HO/TZVRHAAAYOII4p+q+POf/6yMjAxNnTpVW7ZsUadOndS3b18dPHgwRN+0Yg6fz+cL6yd+j+IzVkcAANVbQdFpq0OoNhpH1Q7p8YOZ6rpVCLV79+7q1q2bZs2aJUkqLS1V06ZNNXbsWD300EPBC+pHsOYAAACTYF6t4PV65fV6DWMul0sul8swdurUKW3evFmZmZmBMafTqdTUVGVlZQUvoMrwwefz+XzFxcW+qVOn+oqLi60OxVLkwY88+JEHP/LgRx5+mqlTp/okGbapU6eW2++bb77xSfKtW7fOMD5hwgTfJZdcEqZo/arNtILVCgoK5Ha7lZ+fr+joaKvDsQx58CMPfuTBjzz4kYefprKdgwMHDuj888/XunXrlJKSEhh/8MEHtWbNGmVnZ4clXolpBQAAQqqiQqAiDRs2VEREhHJzcw3jubm5io+PD1V4FeJqBQAAqoE6deqoa9euWrVqVWCstLRUq1atMnQSwoHOAQAA1URGRoaGDRumiy++WJdccomee+45FRYW6s477wxrHBQH/+NyuTR16tRKtX7OZeTBjzz4kQc/8uBHHkLv17/+tQ4dOqQpU6YoJydHnTt31ooVKxQXFxfWOFiQCAAADFhzAAAADCgOAACAAcUBAAAwoDgAAAAGFAeqHo/HtNratWs1YMAAJSYmyuFwaNmyZVaHZAmPx6Nu3bopKipKjRs31qBBg7Rnzx6rwwq7OXPmqGPHjoqOjlZ0dLRSUlL03nvvWR2W5aZPny6Hw6Fx48ZZHUpYPfLII3I4HIatTZs2VoeFELJ9cVBdHo9ptcLCQnXq1Ekvvvii1aFYas2aNUpPT9f69eu1cuVKnT59Wtdcc40KCwutDi2smjRpounTp2vz5s3atGmTrrrqKg0cOFA7d+60OjTLbNy4US+99JI6duxodSiWaNeunb799tvA9uGHH1odEkIprE9yqIYuueQSX3p6euDnkpISX2Jios/j8VgYlbUk+ZYuXWp1GNXCwYMHfZJ8a9assToUy9WvX9/36quvWh2GJY4fP+674IILfCtXrvT17t3bd99991kdUlhNnTrV16lTJ6vDQBjZunPw3eMxU1NTA2OWPR4T1VJ+fr4kqUGDBhZHYp2SkhItWbJEhYWFYb+Fa3WRnp6u6667zvB3hd3s3btXiYmJ+uUvf6m0tDTt37/f6pAQQra+Q+Lhw4dVUlJS7s5TcXFx2r17t0VRobooLS3VuHHj1KtXL7Vv397qcMJux44dSklJUXFxsc477zwtXbpUbdu2tTqssFuyZIm2bNmijRs3Wh2KZbp376758+erdevW+vbbbzVt2jRddtll+uSTTxQVFWV1eAgBWxcHwA9JT0/XJ598Ytu51datW2vr1q3Kz8/XX/7yFw0bNkxr1qyxVYHw1Vdf6b777tPKlSsVGRlpdTiW6d+/f+C/O3bsqO7du6t58+Z64403NHz4cAsjQ6jYujioTo/HRPUyZswYLV++XGvXrlWTJk2sDscSderUUatWrSRJXbt21caNG/X888/rpZdesjiy8Nm8ebMOHjyoiy66KDBWUlKitWvXatasWfJ6vYqIiLAwQmvExMTowgsv1Oeff251KAgRW685qE6Px0T14PP5NGbMGC1dulSrV69WUlKS1SFVG6WlpfJ6vVaHEVZ9+vTRjh07tHXr1sB28cUXKy0tTVu3brVlYSBJJ06c0H/+8x8lJCRYHQpCxNadA6n6PB7TaidOnDD8FrBv3z5t3bpVDRo0ULNmzSyMLLzS09O1ePFivf3224qKilJOTo4kye12q27duhZHFz6ZmZnq37+/mjVrpuPHj2vx4sX617/+pffff9/q0MIqKiqq3HqTevXqKTY21lbrUB544AENGDBAzZs314EDBzR16lRFRETolltusTo0hIjti4Pq8nhMq23atElXXnll4OeMjAxJ0rBhwzR//nyLogq/OXPmSJKuuOIKw/i8efN0xx13hD8gixw8eFC/+c1v9O2338rtdqtjx456//33dfXVV1sdGizw9ddf65ZbblFeXp4aNWqkSy+9VOvXr1ejRo2sDg0hwiObAQCAga3XHAAAgPIoDgAAgAHFAQAAMKA4AAAABhQHAADAgOIAAAAYUBwAAAADigMAAGBAcQAAAAwoDgAAgAHFAQAAMKA4AAAABv8P23JXTGSlG8oAAAAASUVORK5CYII=", ->>>>>>> dev "text/plain": [ "
" ] diff --git a/package-lock.json b/package-lock.json new file mode 100644 index 0000000..b01a960 --- /dev/null +++ b/package-lock.json @@ -0,0 +1,317 @@ +{ + "name": "Prakriti", + "lockfileVersion": 3, + "requires": true, + "packages": { + "": { + "dependencies": { + "concurrently": "^8.2.2" + } + }, + "node_modules/@babel/runtime": { + "version": "7.23.9", + "resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.23.9.tgz", + "integrity": "sha512-0CX6F+BI2s9dkUqr08KFrAIZgNFj75rdBU/DjCyYLIaV/quFjkk6T+EJ2LkZHyZTbEV4L5p97mNkUsHl2wLFAw==", + "dependencies": { + "regenerator-runtime": "^0.14.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/ansi-regex": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-5.0.1.tgz", + "integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==", + "engines": { + "node": ">=8" + } + }, + "node_modules/ansi-styles": { + "version": "4.3.0", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", + "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", + "dependencies": { + "color-convert": "^2.0.1" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/chalk/ansi-styles?sponsor=1" + } + }, + "node_modules/chalk": { + "version": "4.1.2", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz", + "integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==", + "dependencies": { + "ansi-styles": "^4.1.0", + "supports-color": "^7.1.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/chalk?sponsor=1" + } + }, + "node_modules/chalk/node_modules/supports-color": { + "version": "7.2.0", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", + "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", + "dependencies": { + "has-flag": "^4.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/cliui": { + "version": "8.0.1", + "resolved": "https://registry.npmjs.org/cliui/-/cliui-8.0.1.tgz", + "integrity": "sha512-BSeNnyus75C4//NQ9gQt1/csTXyo/8Sb+afLAkzAptFuMsod9HFokGNudZpi/oQV73hnVK+sR+5PVRMd+Dr7YQ==", + "dependencies": { + "string-width": "^4.2.0", + "strip-ansi": "^6.0.1", + "wrap-ansi": "^7.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/color-convert": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", + "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", + "dependencies": { + "color-name": "~1.1.4" + }, + "engines": { + "node": ">=7.0.0" + } + }, + "node_modules/color-name": { + "version": "1.1.4", + "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", + "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==" + }, + "node_modules/concurrently": { + "version": "8.2.2", + "resolved": "https://registry.npmjs.org/concurrently/-/concurrently-8.2.2.tgz", + "integrity": "sha512-1dP4gpXFhei8IOtlXRE/T/4H88ElHgTiUzh71YUmtjTEHMSRS2Z/fgOxHSxxusGHogsRfxNq1vyAwxSC+EVyDg==", + "dependencies": { + "chalk": "^4.1.2", + "date-fns": "^2.30.0", + "lodash": "^4.17.21", + "rxjs": "^7.8.1", + "shell-quote": "^1.8.1", + "spawn-command": "0.0.2", + "supports-color": "^8.1.1", + "tree-kill": "^1.2.2", + "yargs": "^17.7.2" + }, + "bin": { + "conc": "dist/bin/concurrently.js", + "concurrently": "dist/bin/concurrently.js" + }, + "engines": { + "node": "^14.13.0 || >=16.0.0" + }, + "funding": { + "url": "https://github.com/open-cli-tools/concurrently?sponsor=1" + } + }, + "node_modules/date-fns": { + "version": "2.30.0", + "resolved": "https://registry.npmjs.org/date-fns/-/date-fns-2.30.0.tgz", + "integrity": "sha512-fnULvOpxnC5/Vg3NCiWelDsLiUc9bRwAPs/+LfTLNvetFCtCTN+yQz15C/fs4AwX1R9K5GLtLfn8QW+dWisaAw==", + "dependencies": { + "@babel/runtime": "^7.21.0" + }, + "engines": { + "node": ">=0.11" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/date-fns" + } + }, + "node_modules/emoji-regex": { + "version": "8.0.0", + "resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz", + "integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==" + }, + "node_modules/escalade": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/escalade/-/escalade-3.1.1.tgz", + "integrity": "sha512-k0er2gUkLf8O0zKJiAhmkTnJlTvINGv7ygDNPbeIsX/TJjGJZHuh9B2UxbsaEkmlEo9MfhrSzmhIlhRlI2GXnw==", + "engines": { + "node": ">=6" + } + }, + "node_modules/get-caller-file": { + "version": "2.0.5", + "resolved": "https://registry.npmjs.org/get-caller-file/-/get-caller-file-2.0.5.tgz", + "integrity": "sha512-DyFP3BM/3YHTQOCUL/w0OZHR0lpKeGrxotcHWcqNEdnltqFwXVfhEBQ94eIo34AfQpo0rGki4cyIiftY06h2Fg==", + "engines": { + "node": "6.* || 8.* || >= 10.*" + } + }, + "node_modules/has-flag": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", + "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", + "engines": { + "node": ">=8" + } + }, + "node_modules/is-fullwidth-code-point": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/is-fullwidth-code-point/-/is-fullwidth-code-point-3.0.0.tgz", + "integrity": "sha512-zymm5+u+sCsSWyD9qNaejV3DFvhCKclKdizYaJUuHA83RLjb7nSuGnddCHGv0hk+KY7BMAlsWeK4Ueg6EV6XQg==", + "engines": { + "node": ">=8" + } + }, + "node_modules/lodash": { + "version": "4.17.21", + "resolved": "https://registry.npmjs.org/lodash/-/lodash-4.17.21.tgz", + "integrity": "sha512-v2kDEe57lecTulaDIuNTPy3Ry4gLGJ6Z1O3vE1krgXZNrsQ+LFTGHVxVjcXPs17LhbZVGedAJv8XZ1tvj5FvSg==" + }, + "node_modules/regenerator-runtime": { + "version": "0.14.1", + "resolved": "https://registry.npmjs.org/regenerator-runtime/-/regenerator-runtime-0.14.1.tgz", + "integrity": "sha512-dYnhHh0nJoMfnkZs6GmmhFknAGRrLznOu5nc9ML+EJxGvrx6H7teuevqVqCuPcPK//3eDrrjQhehXVx9cnkGdw==" + }, + "node_modules/require-directory": { + "version": "2.1.1", + "resolved": "https://registry.npmjs.org/require-directory/-/require-directory-2.1.1.tgz", + "integrity": "sha512-fGxEI7+wsG9xrvdjsrlmL22OMTTiHRwAMroiEeMgq8gzoLC/PQr7RsRDSTLUg/bZAZtF+TVIkHc6/4RIKrui+Q==", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/rxjs": { + "version": "7.8.1", + "resolved": "https://registry.npmjs.org/rxjs/-/rxjs-7.8.1.tgz", + "integrity": "sha512-AA3TVj+0A2iuIoQkWEK/tqFjBq2j+6PO6Y0zJcvzLAFhEFIO3HL0vls9hWLncZbAAbK0mar7oZ4V079I/qPMxg==", + "dependencies": { + "tslib": "^2.1.0" + } + }, + "node_modules/shell-quote": { + "version": "1.8.1", + "resolved": "https://registry.npmjs.org/shell-quote/-/shell-quote-1.8.1.tgz", + "integrity": "sha512-6j1W9l1iAs/4xYBI1SYOVZyFcCis9b4KCLQ8fgAGG07QvzaRLVVRQvAy85yNmmZSjYjg4MWh4gNvlPujU/5LpA==", + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/spawn-command": { + "version": "0.0.2", + "resolved": "https://registry.npmjs.org/spawn-command/-/spawn-command-0.0.2.tgz", + "integrity": "sha512-zC8zGoGkmc8J9ndvml8Xksr1Amk9qBujgbF0JAIWO7kXr43w0h/0GJNM/Vustixu+YE8N/MTrQ7N31FvHUACxQ==" + }, + "node_modules/string-width": { + "version": "4.2.3", + "resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz", + "integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==", + "dependencies": { + "emoji-regex": "^8.0.0", + "is-fullwidth-code-point": "^3.0.0", + "strip-ansi": "^6.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-ansi": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", + "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", + "dependencies": { + "ansi-regex": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/supports-color": { + "version": "8.1.1", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-8.1.1.tgz", + "integrity": "sha512-MpUEN2OodtUzxvKQl72cUF7RQ5EiHsGvSsVG0ia9c5RbWGL2CI4C7EpPS8UTBIplnlzZiNuV56w+FuNxy3ty2Q==", + "dependencies": { + "has-flag": "^4.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/supports-color?sponsor=1" + } + }, + "node_modules/tree-kill": { + "version": "1.2.2", + "resolved": "https://registry.npmjs.org/tree-kill/-/tree-kill-1.2.2.tgz", + "integrity": "sha512-L0Orpi8qGpRG//Nd+H90vFB+3iHnue1zSSGmNOOCh1GLJ7rUKVwV2HvijphGQS2UmhUZewS9VgvxYIdgr+fG1A==", + "bin": { + "tree-kill": "cli.js" + } + }, + "node_modules/tslib": { + "version": "2.6.2", + "resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz", + "integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q==" + }, + "node_modules/wrap-ansi": { + "version": "7.0.0", + "resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-7.0.0.tgz", + "integrity": "sha512-YVGIj2kamLSTxw6NsZjoBxfSwsn0ycdesmc4p+Q21c5zPuZ1pl+NfxVdxPtdHvmNVOQ6XSYG4AUtyt/Fi7D16Q==", + "dependencies": { + "ansi-styles": "^4.0.0", + "string-width": "^4.1.0", + "strip-ansi": "^6.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/wrap-ansi?sponsor=1" + } + }, + "node_modules/y18n": { + "version": "5.0.8", + "resolved": "https://registry.npmjs.org/y18n/-/y18n-5.0.8.tgz", + "integrity": "sha512-0pfFzegeDWJHJIAmTLRP2DwHjdF5s7jo9tuztdQxAhINCdvS+3nGINqPd00AphqJR/0LhANUS6/+7SCb98YOfA==", + "engines": { + "node": ">=10" + } + }, + "node_modules/yargs": { + "version": "17.7.2", + "resolved": "https://registry.npmjs.org/yargs/-/yargs-17.7.2.tgz", + "integrity": "sha512-7dSzzRQ++CKnNI/krKnYRV7JKKPUXMEh61soaHKg9mrWEhzFWhFnxPxGl+69cD1Ou63C13NUPCnmIcrvqCuM6w==", + "dependencies": { + "cliui": "^8.0.1", + "escalade": "^3.1.1", + "get-caller-file": "^2.0.5", + "require-directory": "^2.1.1", + "string-width": "^4.2.3", + "y18n": "^5.0.5", + "yargs-parser": "^21.1.1" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/yargs-parser": { + "version": "21.1.1", + "resolved": "https://registry.npmjs.org/yargs-parser/-/yargs-parser-21.1.1.tgz", + "integrity": "sha512-tVpsJW7DdjecAiFpbIB1e3qxIQsE6NoPc5/eTdrbbIC4h0LVsWhnoa3g+m2HclBIujHzsxZ4VJVA+GUuc2/LBw==", + "engines": { + "node": ">=12" + } + } + } +} diff --git a/package.json b/package.json new file mode 100644 index 0000000..fccda8a --- /dev/null +++ b/package.json @@ -0,0 +1,10 @@ +{ + "scripts": { + "frontend": "cd ./frontend && npm run dev", + "backend": "cd ./bot && python app.py", + "project":"concurrently \"npm run frontend\" \"npm run backend\"" + }, + "dependencies": { + "concurrently": "^8.2.2" + } +}