-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcomputing_ROSC_sets.m
96 lines (82 loc) · 2.75 KB
/
computing_ROSC_sets.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
% Author: Mehran Attar
% Written: 10-December-2023
% Last update: --------------
% Last revision: 10-December-2023
%------------- BEGIN CODE --------------
clc
clear all
close all
rand('seed',1);
% Discrete system x(k+1)=Ax(k)+Bu(k).
w = warning ('off','all');
rmpath('folderthatisnotonpath')
warning(w)
% defining system matrices
% defining system matrices
A = [1 -1;1 1];
B = [1;0];
C=eye(2);
D=0;
dim_x = size(A,1);
dim_u = size(B,2);
% defining system constraints
X = zonotope(interval([-1;-1],[1;1])); % constraints on states
U = zonotope(interval([-1.2],[1.2])); % constraints on inputs
W = zonotope(zeros(dim_x,1),0.001*eye(dim_x)); % noise zonotope
model = LTISystem('A',A,'B',B);
X0 = zonotope([0.1;0.1],0.03*[0 -1 1;-1 1 1]);
% Visualization of the RCI set and it's zonotopic over-approximation set
figure;
plot(X0,[1 2],'r--','LineWidth',1)
hold on
% plot(T0,'Alpha',0.3,'color','g');
xlabel('$x_1$','interpreter','latex','FontSize',20)
ylabel('$x_2$','interpreter','latex','FontSize',20)
legend(['RCI set based on model'],['Zonotopic over-approximation of RCI '])
box off
%% compute all possible A and B
sys = ss(A,B,C,D); % define system
[V_AB,AB] = compute_AB(sys,X,U,W);
for i=1:size(V_AB,1)
A_hat{i} = V_AB{i}(1:size(A,1),1:size(A,1));
B_hat{i} = V_AB{i}(1:size(A,1),size(A,1)+1:size(A,1)+size(B,2));
end
%% Computing ROSC sets
close all
% X0 = zonotope([0.2;0.1],0.005*[0 -1 1;-1 1 1]);
% X0 = zonotope([0.2;0.1],0.005*[0.1 -1 2;-1 2 -1]);
% hold on
% border1 = zonotope(interval([0.1;-0.15],[0.3;0.3]));
% plot(border1)
% plot(X0,[1 2],'r')
%
% hold on
% X0 = zonotope(zeros(2,1),0.01*[1 -2 1;-2 1 2]);
% initialization of ROSC sets
Td1{1} = X0; % target set
N = 80; % number of ROSC sets
% temp_gen = 0.1*[1 -1 1;0 2 1]; % define a template for computing a zonotopic inner approximation of ROSC sets
% temp_gen = 0.1*[0 -2 1;-2 1 2];
% temp_gen = [0.1 -1 2;-1 2 -1];
temp_gen = 0.1*[1 -1;0 2];
% temp_gen = 0.1*[0 -2 1;2 -1 -1];
%
for step=1: N
for j=1:size(A_hat,2)
presets{j} = (inv(A_hat{j})*((Td1{step}.mptPolytope.P - W.mptPolytope.P)...
+ (-B_hat{j}*U.mptPolytope.P)));
end
%
Td1{step+1} = compute_intersec(presets)& X.mptPolytope.P;
[Td1{step+1},alpha] = poly_approx(Td1{step+1}, size(temp_gen,2), temp_gen); % computing zonotopic inner approximation of ROSC sets
% Td1{step+1} = reduce(Td1{step+1},'girard',200);
Td_aug1{step+1} = zonotope([Td1{step+1}.center;U.center],[Td1{step+1}.generators;U.generators]); % Augmented ROSC sets
step
% Visualization of ROSC sets
handleData = plot(Td1{step+1});
hold on
pause(0.1)
end
%% Saving ROSC sets
% save('Td')
% save('Td_aug')