diff --git a/README.md b/README.md index 07a8fcdaa..221cd8047 100644 --- a/README.md +++ b/README.md @@ -152,6 +152,7 @@ The recommender models supported by Cornac are listed below. Why don't you join | 2020 | [Adversarial Training Towards Robust Multimedia Recommender System (AMR)](cornac/models/amr), [paper](https://ieeexplore.ieee.org/document/8618394) | [requirements.txt](cornac/models/amr/requirements.txt) | [amr_clothing.py](examples/amr_clothing.py) | | [Hybrid neural recommendation with joint deep representation learning of ratings and reviews (HRDR)](cornac/models/hrdr), [paper](https://www.sciencedirect.com/science/article/abs/pii/S0925231219313207) | [requirements.txt](cornac/models/hrdr/requirements.txt) | [hrdr_example.py](examples/hrdr_example.py) | | [LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation](cornac/models/lightgcn), [paper](https://arxiv.org/pdf/2002.02126.pdf) | [requirements.txt](cornac/models/lightgcn/requirements.txt) | [lightgcn_example.py](examples/lightgcn_example.py) +| | [New Variational Autoencoder for Top-N Recommendations with Implicit Feedback (RecVAE)](cornac/models/recvae), [paper](https://doi.org/10.1145/3336191.3371831) | [requirements.txt](cornac/models/recvae/requirements.txt) | [recvae_example.py](examples/recvae_example.py) | | [Temporal-Item-Frequency-based User-KNN (TIFUKNN)](cornac/models/tifuknn), [paper](https://arxiv.org/pdf/2006.00556.pdf) | N/A | [tifuknn_tafeng.py](examples/tifuknn_tafeng.py) | 2019 | [Embarrassingly Shallow Autoencoders for Sparse Data (EASEá´¿)](cornac/models/ease), [paper](https://arxiv.org/pdf/1905.03375.pdf) | N/A | [ease_movielens.py](examples/ease_movielens.py) | | [Neural Graph Collaborative Filtering (NGCF)](cornac/models/ngcf), [paper](https://arxiv.org/pdf/1905.08108.pdf) | [requirements.txt](cornac/models/ngcf/requirements.txt) | [ngcf_example.py](examples/ngcf_example.py) diff --git a/cornac/models/__init__.py b/cornac/models/__init__.py index 23a626e9a..e1432c968 100644 --- a/cornac/models/__init__.py +++ b/cornac/models/__init__.py @@ -64,6 +64,7 @@ from .online_ibpr import OnlineIBPR from .pcrl import PCRL from .pmf import PMF +from .recvae import RecVAE from .sbpr import SBPR from .skm import SKMeans from .sorec import SoRec diff --git a/cornac/models/recvae/__init__.py b/cornac/models/recvae/__init__.py new file mode 100644 index 000000000..30b996a48 --- /dev/null +++ b/cornac/models/recvae/__init__.py @@ -0,0 +1 @@ +from .recom_recvae import RecVAE diff --git a/cornac/models/recvae/recom_recvae.py b/cornac/models/recvae/recom_recvae.py new file mode 100644 index 000000000..497e2e95c --- /dev/null +++ b/cornac/models/recvae/recom_recvae.py @@ -0,0 +1,279 @@ +# Copyright 2018 The Cornac Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import numpy as np +from tqdm.auto import trange + +from ..recommender import Recommender +from ...exception import ScoreException + + +class RecVAE(Recommender): + """ + RecVAE, a recommender system based on a Variational Autoencoder. + + Parameters + ---------- + name : str, optional, default: 'RecVae' + Name of the recommender model. + + hidden_dim : int, optional, default: 600 + Dimension of the hidden layer in the VAE architecture. + + latent_dim : int, optional, default: 200 + Dimension of the latent layer in the VAE architecture. + + batch_size : int, optional, default: 500 + Size of the batches used during training. + + beta : float, optional + Weighting factor for the KL divergence term in the VAE loss function. + + gamma : float, optional, default: 0.005 + Weighting factor for the regularization term in the loss function. + + lr : float, optional, default: 5e-4 + Learning rate for the optimizer. + + n_epochs : int, optional, default: 50 + Number of epochs to train the model. + + n_enc_epochs : int, optional, default: 3 + Number of epochs to train the encoder part of VAE. + + n_dec_epochs : int, optional, default: 1 + Number of epochs to train the decoder part of VAE. + + not_alternating : boolean, optional, default: False + If True, the model training will not alternate between encoder and decoder. + + trainable : boolean, optional, default: True + When False, the model will not be re-trained, and input of pre-trained parameters are required. + + verbose : boolean, optional, default: False + When True, running logs are displayed. + + seed : int, optional + Random seed for weight initialization and training reproducibility. + + use_gpu : boolean, optional, default: True + When True, training utilizes GPU if available. + + References + ---------- + * RecVAE GitHub Repository: https://github.com/ilya-shenbin/RecVAE + * Paper Link: https://arxiv.org/abs/1912.11160 + + + """ + + def __init__( + self, + name="RecVae", + + hidden_dim = 600, + latent_dim = 200, + batch_size = 500, + beta = None, + gamma = 0.005, + lr = 5e-4, + n_epochs = 50, + n_enc_epochs = 3, + n_dec_epochs = 1, + not_alternating = False, + + trainable=True, + verbose=False, + seed=None, + use_gpu=True, + ): + + + + Recommender.__init__(self,name=name, trainable=trainable, verbose=verbose) + + self.hidden_dim = hidden_dim + self.latent_dim = latent_dim + self.batch_size = batch_size + self.beta = beta + self.gamma = gamma + self.lr = lr + self.n_epochs = n_epochs + self.n_enc_epochs = n_enc_epochs + self.n_dec_epochs = n_dec_epochs + self.not_alternating = not_alternating + self.seed = seed + + + import torch + if use_gpu and torch.cuda.is_available(): + self.device = torch.device("cuda:0") + else: + self.device = torch.device("cpu") + + + def run(self,model, opts, train_set, my_batch_size, n_epochs, beta, gamma, dropout_rate): + import torch + train_data = train_set.csr_matrix + model.train() + for _ in range(n_epochs): + for i, batch_ids in enumerate( + train_set.user_iter(my_batch_size, shuffle=True) + ): + + ratings = torch.Tensor((train_data[batch_ids,:]).toarray()).to(self.device) + + for optimizer in opts: + optimizer.zero_grad() + + _, loss = model(ratings, beta=beta, gamma=gamma, dropout_rate=dropout_rate) + loss.backward() + + for optimizer in opts: + optimizer.step() + + + def fit(self, train_set, val_set=None): + """Fit the model to observations. + + Parameters + ---------- + train_set: :obj:`cornac.data.Dataset`, required + User-Item preference data as well as additional modalities. + + val_set: :obj:`cornac.data.Dataset`, optional, default: None + User-Item preference data for model selection purposes (e.g., early stopping). + + Returns + ------- + self : object + """ + Recommender.fit(self, train_set, val_set) + + from .recvae import VAE + import torch + from torch import optim + + from ...metrics import NDCG + from ...eval_methods import ranking_eval + + if self.trainable: + + if self.verbose: + print("Learning...") + if self.seed is not None: + np.random.seed(self.seed) + torch.manual_seed(self.seed) + torch.cuda.manual_seed(self.seed) + torch.cuda.manual_seed_all(self.seed) + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + torch.backends.cudnn.enabled = False + + + model_kwargs = { + 'hidden_dim': self.hidden_dim, + 'latent_dim': self.latent_dim, + 'input_dim': train_set.num_items, + } + + self.recvae_model = VAE(**model_kwargs).to(self.device) + + + + learning_kwargs = { + 'model': self.recvae_model, + 'train_set': train_set, + 'my_batch_size': self.batch_size, + 'beta': self.beta, + 'gamma': self.gamma + } + + self.mydata = train_set + decoder_params = set(self.recvae_model.decoder.parameters()) + encoder_params = set(self.recvae_model.encoder.parameters()) + + optimizer_encoder = optim.Adam(encoder_params, lr=self.lr) + optimizer_decoder = optim.Adam(decoder_params, lr=self.lr) + + progress_bar = trange(1, self.n_epochs + 1, desc="RecVAE", disable=not self.verbose) + + for _ in progress_bar: + if self.not_alternating: + self.run(opts=[optimizer_encoder, optimizer_decoder], n_epochs=1, dropout_rate=0.5, **learning_kwargs) + else: + self.run(opts=[optimizer_encoder], n_epochs=self.n_enc_epochs, dropout_rate=0.5, **learning_kwargs) + self.recvae_model.update_prior() + self.run(opts=[optimizer_decoder], n_epochs=self.n_dec_epochs, dropout_rate=0, **learning_kwargs) + + + ndcg_100 = ranking_eval( + model=self, + metrics=[NDCG(k=100)], + train_set=train_set, + test_set=train_set, + )[0][0] + + + progress_bar.set_postfix(ndcg100 = ndcg_100) + + if self.verbose: + print(f"Learning completed : [{ndcg_100}]") + + elif self.verbose: + print("%s is trained already (trainable = False)" % (self.name)) + + + return self + + def score(self, user_idx, item_idx=None): + """Predict the scores/ratings of a user for an item. + + Parameters + ---------- + user_id: int, required + The index of the user for whom to perform score prediction. + + item_id: int, optional, default: None + The index of the item for that to perform score prediction. + If None, scores for all known items will be returned. + + Returns + ------- + res : A scalar or a Numpy array + Relative scores that the user gives to the item or to all known items + """ + import torch + + ratings_in = self.mydata.matrix[user_idx,:] + ratings_pred = self.recvae_model(torch.Tensor(ratings_in.toarray()).to(self.device), calculate_loss=False).cpu().detach().numpy().flatten() + + + if item_idx is None: + if not self.knows_user(user_idx): + raise ScoreException( + "Can't make score prediction for (user_id=%d)" % user_idx + ) + + return ratings_pred + else: + if not (self.knows_user(user_idx) and self.knows_item(item_idx)): + raise ScoreException( + "Can't make score prediction for (user_id=%d, item_id=%d)" + % (user_idx, item_idx) + ) + + return ratings_pred[item_idx] + diff --git a/cornac/models/recvae/recvae.py b/cornac/models/recvae/recvae.py new file mode 100644 index 000000000..b90017568 --- /dev/null +++ b/cornac/models/recvae/recvae.py @@ -0,0 +1,117 @@ +import numpy as np +from copy import deepcopy + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def swish(x): + return x.mul(torch.sigmoid(x)) + +def log_norm_pdf(x, mu, logvar): + return -0.5*(logvar + np.log(2 * np.pi) + (x - mu).pow(2) / logvar.exp()) + + +class CompositePrior(nn.Module): + def __init__(self, hidden_dim, latent_dim, input_dim, mixture_weights=[3/20, 3/4, 1/10]): + super(CompositePrior, self).__init__() + + self.mixture_weights = mixture_weights + + self.mu_prior = nn.Parameter(torch.Tensor(1, latent_dim), requires_grad=False) + self.mu_prior.data.fill_(0) + + self.logvar_prior = nn.Parameter(torch.Tensor(1, latent_dim), requires_grad=False) + self.logvar_prior.data.fill_(0) + + self.logvar_uniform_prior = nn.Parameter(torch.Tensor(1, latent_dim), requires_grad=False) + self.logvar_uniform_prior.data.fill_(10) + + self.encoder_old = Encoder(hidden_dim, latent_dim, input_dim) + self.encoder_old.requires_grad_(False) + + def forward(self, x, z): + post_mu, post_logvar = self.encoder_old(x, 0) + + stnd_prior = log_norm_pdf(z, self.mu_prior, self.logvar_prior) + post_prior = log_norm_pdf(z, post_mu, post_logvar) + unif_prior = log_norm_pdf(z, self.mu_prior, self.logvar_uniform_prior) + + gaussians = [stnd_prior, post_prior, unif_prior] + gaussians = [g.add(np.log(w)) for g, w in zip(gaussians, self.mixture_weights)] + + density_per_gaussian = torch.stack(gaussians, dim=-1) + + return torch.logsumexp(density_per_gaussian, dim=-1) + + +class Encoder(nn.Module): + def __init__(self, hidden_dim, latent_dim, input_dim, eps=1e-1): + super(Encoder, self).__init__() + + self.fc1 = nn.Linear(input_dim, hidden_dim) + self.ln1 = nn.LayerNorm(hidden_dim, eps=eps) + self.fc2 = nn.Linear(hidden_dim, hidden_dim) + self.ln2 = nn.LayerNorm(hidden_dim, eps=eps) + self.fc3 = nn.Linear(hidden_dim, hidden_dim) + self.ln3 = nn.LayerNorm(hidden_dim, eps=eps) + self.fc4 = nn.Linear(hidden_dim, hidden_dim) + self.ln4 = nn.LayerNorm(hidden_dim, eps=eps) + self.fc5 = nn.Linear(hidden_dim, hidden_dim) + self.ln5 = nn.LayerNorm(hidden_dim, eps=eps) + self.fc_mu = nn.Linear(hidden_dim, latent_dim) + self.fc_logvar = nn.Linear(hidden_dim, latent_dim) + + def forward(self, x, dropout_rate): + x = F.normalize(x) + x = F.dropout(x, dropout_rate, training=self.training) + + h1 = self.ln1(swish(self.fc1(x))) + h2 = self.ln2(swish(self.fc2(h1) + h1)) + h3 = self.ln3(swish(self.fc3(h2) + h1 + h2)) + h4 = self.ln4(swish(self.fc4(h3) + h1 + h2 + h3)) + h5 = self.ln5(swish(self.fc5(h4) + h1 + h2 + h3 + h4)) + return self.fc_mu(h5), self.fc_logvar(h5) + + +class VAE(nn.Module): + def __init__(self, hidden_dim, latent_dim, input_dim): + super(VAE, self).__init__() + + self.encoder = Encoder(hidden_dim, latent_dim, input_dim) + self.prior = CompositePrior(hidden_dim, latent_dim, input_dim) + self.decoder = nn.Linear(latent_dim, input_dim) + + def reparameterize(self, mu, logvar): + if self.training: + std = torch.exp(0.5*logvar) + eps = torch.zeros_like(std).normal_(mean=0, std=0.01) + return mu + eps * std + else: + return mu + + def forward(self, user_ratings, beta=None, gamma=1, dropout_rate=0.5, calculate_loss=True): + mu, logvar = self.encoder(user_ratings, dropout_rate=dropout_rate) + z = self.reparameterize(mu, logvar) + x_pred = self.decoder(z) + if calculate_loss: + if gamma: + norm = user_ratings.sum(dim=-1) + kl_weight = gamma * norm + elif beta: + kl_weight = beta + + mll = (F.log_softmax(x_pred, dim=-1) * user_ratings).sum(dim=-1).mean() + kld = (log_norm_pdf(z, mu, logvar) - self.prior(user_ratings, z)).sum(dim=-1).mul(kl_weight).mean() + negative_elbo = -(mll - kld) + + + + return (mll, kld), negative_elbo + + else: + return x_pred + + def update_prior(self): + self.prior.encoder_old.load_state_dict(deepcopy(self.encoder.state_dict())) \ No newline at end of file diff --git a/cornac/models/recvae/requirements.txt b/cornac/models/recvae/requirements.txt new file mode 100644 index 000000000..757fa182f --- /dev/null +++ b/cornac/models/recvae/requirements.txt @@ -0,0 +1 @@ +torch>=2.0.0 diff --git a/docs/source/api_ref/models.rst b/docs/source/api_ref/models.rst index 63bb63847..bbbc6a1af 100644 --- a/docs/source/api_ref/models.rst +++ b/docs/source/api_ref/models.rst @@ -34,11 +34,36 @@ Adversarial Training Towards Robust Multimedia Recommender System (AMR) .. automodule:: cornac.models.amr.recom_amr :members: +Hybrid neural recommendation with joint deep representation learning of ratings and reviews (HRDR) +-------------------------------------------------------------------------------------------------- +.. automodule:: cornac.models.hrdr.recom_hrdr + :members: + +Simplifying and Powering Graph Convolution Network for Recommendation (LightGCN) +-------------------------------------------------------------------------------- +.. automodule:: cornac.models.lightgcn.recom_lightgcn + :members: + +New Variational Autoencoder for Top-N Recommendations with Implicit Feedback (RecVAE) +------------------------------------------------------------------------------------- +.. automodule:: cornac.models.recvae.recom_recvae + :members: + +Temporal-Item-Frequency-based User-KNN (TIFUKNN) +--------------------------------------------------- +.. automodule:: cornac.models.tifuknn.recom_tifuknn + :members: + Embarrassingly Shallow Autoencoders for Sparse Data (EASEá´¿) ----------------------------------------------------------- .. automodule:: cornac.models.ease.recom_ease :members: +Neural Graph Collaborative Filtering (NGCF) +------------------------------------------- +.. automodule:: cornac.models.ngcf.recom_ngcf + :members: + Collaborative Context Poisson Factorization (C2PF) -------------------------------------------------- .. automodule:: cornac.models.c2pf.recom_c2pf @@ -54,26 +79,11 @@ Multi-Task Explainable Recommendation (MTER) .. automodule:: cornac.models.mter.recom_mter :members: -Hybrid neural recommendation with joint deep representation learning of ratings and reviews (HRDR) --------------------------------------------------------------------------------------------------- -.. automodule:: cornac.models.hrdr.recom_hrdr - :members: - -Simplifying and Powering Graph Convolution Network for Recommendation (LightGCN) --------------------------------------------------------------------------------- -.. automodule:: cornac.models.lightgcn.recom_lightgcn - :members: - Neural Attention Rating Regression with Review-level Explanations (NARRE) ------------------------------------------------------------------------- .. automodule:: cornac.models.narre.recom_narre :members: -Neural Graph Collaborative Filtering (NGCF) -------------------------------------------- -.. automodule:: cornac.models.ngcf.recom_ngcf - :members: - Probabilistic Collaborative Representation Learning (PCRL) ---------------------------------------------------------- .. automodule:: cornac.models.pcrl.recom_pcrl @@ -84,16 +94,16 @@ VAE for Collaborative Filtering (VAECF) .. automodule:: cornac.models.vaecf.recom_vaecf :members: -Conditional VAE for Collaborative Filtering (CVAECF) ----------------------------------------------------- -.. automodule:: cornac.models.cvaecf.recom_cvaecf - :members: - Collaborative Variational Autoencoder (CVAE) -------------------------------------------- .. automodule:: cornac.models.cvae.recom_cvae :members: +Conditional VAE for Collaborative Filtering (CVAECF) +---------------------------------------------------- +.. automodule:: cornac.models.cvaecf.recom_cvaecf + :members: + Generalized Matrix Factorization (GMF) -------------------------------------- .. automodule:: cornac.models.ncf.recom_gmf @@ -267,4 +277,4 @@ User K-Nearest-Neighbors (UserKNN) Weighted Matrix Factorization (WMF) ----------------------------------- .. automodule:: cornac.models.wmf.recom_wmf - :members: \ No newline at end of file + :members: diff --git a/examples/README.md b/examples/README.md index 5ed367552..e40c9e3e7 100644 --- a/examples/README.md +++ b/examples/README.md @@ -96,6 +96,8 @@ [pmf_ratio.py](pmf_ratio.py) - Probabilistic Matrix Factorization (PMF) with RatioSplit. +[recvae_example.py](recvae_example.py) - New Variational Autoencoder for Top-N Recommendations with Implicit Feedback (RecVAE). + [skm_movielens.py](skm_movielens.py) - SKMeans vs BPR on MovieLens data. [svd_example.py](svd_example.py) - Singular Value Decomposition (SVD) with MovieLens dataset. diff --git a/examples/recvae_example.py b/examples/recvae_example.py new file mode 100644 index 000000000..d19bac6e6 --- /dev/null +++ b/examples/recvae_example.py @@ -0,0 +1,48 @@ +# Copyright 2018 The Cornac Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""Example for RecVAE""" + +import cornac +from cornac.datasets import movielens +from cornac.eval_methods import RatioSplit + +# Load MovieLens 1M ratings +ml_1m = movielens.load_feedback(variant="1M") + +# Define an evaluation method to split feedback into train and test sets +ratio_split = RatioSplit( + data=ml_1m, test_size=0.2, exclude_unknowns=False, verbose=True +) + +# Instantiate the global average baseline and MF model +global_avg = cornac.models.GlobalAvg() +recvae = cornac.models.RecVAE(verbose=True) + +# Instantiate MAE and RMSE for evaluation +mae = cornac.metrics.MAE() +rmse = cornac.metrics.RMSE() +ndcg = cornac.metrics.NDCG(k=100) +recall = cornac.metrics.Recall(k=100) + +# Put everything together into an experiment and run it +cornac.Experiment( + eval_method=ratio_split, + models=[ + global_avg, + recvae, + ], + metrics=[mae, rmse, ndcg, recall], + user_based=True, +).run() \ No newline at end of file