forked from we1pingyu/DSHNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vd_retinanet_r50_fpn_base.py
134 lines (133 loc) · 4.15 KB
/
vd_retinanet_r50_fpn_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
_base_ = [
'../_base_/models/retinanet_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
checkpoint_config = dict(interval=18)
log_config = dict(
interval=100,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# model settings
model = dict(
type='RetinaNet',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5),
bbox_head=dict(
type='RetinaHead',
num_classes=10,
in_channels=256,
stacked_convs=4,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=2,
scales_per_octave=3,
ratios=[0.5, 1.0, 2.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)))
# training and testing settings
train_cfg = dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1),
allowed_border=-1,
pos_weight=-1,
debug=False)
atest_cfg = dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=500)
# dataset settings
dataset_type = 'CocoDataset'
classes = ('pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor')
data_root = '/home/omnisky/ywp/data/vd/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=[(1000, 600)], keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=[(1000, 600)],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
classes=classes,
ann_file=data_root + 'VisDrone2019-DET-train/coco_annotations/train.json',
img_prefix=data_root + 'VisDrone2019-DET-train/images/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
classes=classes,
ann_file=data_root + 'VisDrone2019-DET-val/coco_annotations/val.json',
img_prefix=data_root + 'VisDrone2019-DET-val/images/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
classes=classes,
ann_file=data_root + 'VisDrone2019-DET-val/coco_annotations/val.json',
img_prefix=data_root + 'VisDrone2019-DET-val/images/',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='bbox')
optimizer = dict(type='SGD', lr=0.001, momentum=0.95, weight_decay=5 * 1e-4)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 12, 16])
total_epochs = 18