-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMVPA.m
201 lines (161 loc) · 5.93 KB
/
MVPA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
function [volTs,volResp]= MVPA(volTs,info,mask,volResp)
%% Load time series data if not already loaded
for r = 1:length(volTs)
if isempty(volTs(r).mri.vol) && ~isfield(volTs(r).mri,'vec') || isempty(volTs(r).mri.vec)
disp(['loadind run' num2str(r) '/' num2str(length(volTs))])
volTs(r).mri = MRIload2(volTs(r).mri,mask);
end
end
%% Run univariate response extraction
if ~exist('volResp','var') || isempty(volResp)
forceThis = 1;
verboseThis = 1;
if isfield(volTs,'dsgn') && ~isempty(volTs(1).dsgn.onsetList)
[volResp, ~, info] = volTsGetResp3([],info,volTs,[],mask,forceThis,verboseThis);
else
dbstack; error('need dsgn as a subfield of volTs')
end
end
%% Load response time series if not already loaded
for r = 1:length(volResp)
if isempty(volResp(r).ts.vol) && ~isfield(volResp(r).ts,'vec') || isempty(volResp(r).ts.vec)
disp(['loadind run' num2str(r) '/' num2str(length(volTs))])
volResp(r).ts = MRIload2(volResp(r).ts,mask);
end
end
%%
t = volResp.ts.t(2:end-1)';
imMask = MRIload2(MRIload2(mask)); imMask = imMask.vol2vec;
imxLim = [find(any(imMask,1),1,'first')-1.5 find(any(imMask,1),1,'last')+1.5];
imyLim = [find(any(imMask,2),1,'first')-1.5 find(any(imMask,2),1,'last')+1.5];
switch info.method
case 'uniSVD'
Y = volResp.ts.vec(2:end-1,:)';
[U,S,V] = svd(Y,'vector','econ');
Cvar = S';
Ctime = permute(V.*Cvar,[3 1 2]);
Cspace = permute(U.*Cvar,[1 3 2]);
Cvar = permute(Cvar,[1 3 2]);
case 'multiSVD'
Y = [volTs.mri]; Y = cat(1,Y.vec);
X = volResp.dsgn.dsgnMat;
[beta,Sigma,E,CovB,logL] = mvregress(X,Y);
regInd = ismember(volResp.dsgn.dsgnMatLabel(1,:),'stim');
Y = beta(regInd,:)';
[U,S,V] = svd(Y,'vector','econ');
Cvar = S';
Ctime = permute(V.*Cvar,[3 1 2]);
Cspace = permute(U.*Cvar,[1 3 2]);
Cvar = permute(Cvar,[1 3 2]);
% Actually gives the same response time courses as uniSVD. The
% difference may lie only in the error covariance and associated
% statistics.
% See
% https://www.mathworks.com/matlabcentral/answers/108929-after-using-mvregress-how-can-i-find-the-rsquared-value-t-values-p-values-f-statistic-and-stand
% for statistic on multivariate models
case 'canon'
Y = [volTs.mri]; Y = cat(1,Y.vec);
X = volResp.dsgn.dsgnMat;
[beta,Sigma,E,CovB,logL] = mvregress(X,Y);
regInd = ~ismember(volResp.dsgn.dsgnMatLabel(1,:),'stim');
Y = Y-X(:,regInd)*beta(regInd,:);
regInd = ismember(volResp.dsgn.dsgnMatLabel(1,:),'stim');
[A,B,r,U,V,stats] = canoncorr(X(:,regInd),Y);
A = ( U' / ( X(:,regInd)-mean(X(:,regInd),1) )' )';
B = ( V' / ( Y -mean(Y ,1) )' )';
Cvar = permute(stats.F,[ 1 3 2]);
Ctime = permute(A,[3 1 2]);
Cspace = permute(B,[1 3 2]);
regInd = ismember(volResp.dsgn.dsgnMatLabel(1,:),'stim');
Y = beta(regInd,:)';
% Since regressor estimates are the same for univariate and
% multivariate regression, using multivariate regression for
% detrending is a waste.
case 'pls'
Y = [volTs.mri]; Y = cat(1,Y.vec);
X = volResp.dsgn.dsgnMat;
[beta,Sigma,E,CovB,logL] = mvregress(X,Y);
regInd = ~ismember(volResp.dsgn.dsgnMatLabel(1,:),'stim');
Y = Y-X(:,regInd)*beta(regInd,:);
regInd = ismember(volResp.dsgn.dsgnMatLabel(1,:),'stim');
[XL,YL,XS,YS,~,PCTVAR,MSE,stats] = plsregress(X(:,regInd),Y);
Cvar = PCTVAR(2,:);
Ctime = permute(XL,[3 1 2]);
Cspace = permute(YL,[1 3 2]);
regInd = ismember(volResp.dsgn.dsgnMatLabel(1,:),'stim');
Y = beta(regInd,:)';
% Since regressor estimates are the same for univariate and
% multivariate regression, using multivariate regression for
% detrending is a waste.
end
figure('WindowStyle','docked');
ht = tiledlayout(3,3); ht.TileSpacing = 'tight'; ht.Padding = "tight";
%%% Plot original data
nexttile;
plot(t,Y); hold on
plot(t,mean(Y,1),'k','LineWidth',3);
xlabel('time (sec)')
title('voxel response timecourses')
nexttile;
plot(squeeze(Cvar),'-ok')
ylabel('variance explained')
xlabel('component number')
nexttile;
imagesc(imMask); colormap gray
xlim(imxLim); ylim(imyLim);
ax = gca; ax.PlotBoxAspectRatio = [1 1 1];
ax.YAxis.Visible = 'off'; ax.XAxis.Visible = 'off';
title('voxel mask')
%%% Plot spactial compoentns
axSpace = {};
for c = 1:3
nexttile;
im = zeros(size(imMask));
im(imMask) = Cspace(:,:,c);
imagesc(im)
xlim(imxLim); ylim(imyLim);
ax = gca; ax.PlotBoxAspectRatio = [1 1 1];
ax.YAxis.Visible = 'off'; ax.XAxis.Visible = 'off';
ax.Colormap = parula; colorbar
title(['component ' num2str(c)])
axSpace{end+1} = ax;
end
cLim = get([axSpace{:}],'CLim');
cLim = max(abs([cLim{:}])).*[-1 1];
set([axSpace{:}],'CLim',cLim);
%%% Plot temporal compoentns
axTime = {};
for c = 1:3
axTime{end+1} = nexttile;
% switch info.method
% case {'uniSVD' 'multiSVD'}
plot(t,Ctime(:,:,c),'k'); hold on
% otherwise
% plot(t,Ctime(:,:,c),'k'); hold on
% end
if c==1
[~,iVox] = max(abs(Cspace(:,:,c)),[],1);
y = Y(iVox,:).*sign(Cspace(iVox,:,c));
y = y ./max(abs(y)) .*max(abs(Ctime(:,:,c)),[],2);
plot(t,y,'--k')
end
grid on; grid minor;
axis tight
title(['component ' num2str(c)])
xlabel('time (sec)')
drawnow
xLim = xlim; xLim(1) = 0; xlim(xLim);
if c==1
legend({'compenent' 'max vox'})
end
end
hold on
plot(t,sum(Ctime(:,:,1:3),3),'r')
yLim = get([axTime{:}],'YLim'); yLim = max(abs([yLim{:}])).*[-1 1];
set([axTime{:}],'YLim',yLim);
ttlStr = {info.method};
if isfield(info,'label') && ~isempty(info.label)
ttlStr{end+1} = info.label;
end
title(ht,strjoin(ttlStr,'; '));
drawnow