-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathapp.py
1084 lines (879 loc) · 34 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
print(f"Loading..")
import time
import os
import cv2
import queue
import threading
import numpy as np
import math
from datetime import datetime
from ultralytics import YOLO
import torch
import torchvision
import base64
import requests
import json
import pickle
import sys
import torch.nn as nn
#from vdb import VectorDatabase
model = "yolo11s"
rtsp_stream = "rtsp://psychip:[email protected]:554/cam/realmonitor?channel=1&subtype=0"
ollama = "http://magdalena:11434/api/generate"
ollama_model = "llava:latest";
#vsize = 512 # yolo11n:256 yolo11s:512
_font = cv2.FONT_HERSHEY_SIMPLEX
_gray = cv2.COLOR_BGR2GRAY
point_timeout = 2500
stationary_val = 16
buffer = 512
idle_reset = 3000
min_confidence = 0.15
min_size = 20
class_confidence = {
"truck":0.35,
"car":0.15,
"boat":0.85,
"bus":0.5,
"aeroplane":0.85,
"frisbee":0.85,
"pottedplant":0.55,
"train":0.85,
"chair":0.5,
"parking meter":0.9,
"fire hydrant":0.65,
"traffic light":0.65,
"backpack":0.65,
"bicycle":0.55,
"bench":0.75,
"zebra":0.90,
"tvmonitor":0.80
}
# change per scenerio, outdoor, indoor, jungle, mountain etc
classlist = ["person","car","motorbike","bicycle","truck","traffic light","stop sign","bench","bird","cat","dog","backpack","suitcase","handbag","umbrella","sports ball"]
prompts = {
"person": "get gender and age of this person in 5 words or less",
"car": "get body type and color of this car in 5 words or less"
}
snapshot_directory = "snapshots"
frames = 0
prev_frames = 0
last_frame = 0
fps = 0
WINDOW_WIDTH = 0
WINDOW_HEIGHT = 0
recording = False
out = None
opsize = (640,480)
streamsize = (0,0)
zoom_factor = 1.0
pan_x = 0
pan_y = 0
hdstream = False
drawing = False
dragging = False
drag_start_x = 0
drag_start_y = 0
draw_start_x = 0
draw_start_y = 0
draw_end_x = 0
draw_end_y = 0
uispace = 0 #300
padding = 6#px padding on each element
def resolve(file_path):
if os.path.isabs(file_path):
directory = os.path.dirname(file_path)
if not os.path.exists(directory):
os.makedirs(directory)
return file_path
else:
directory = os.path.dirname(file_path)
if directory and not os.path.exists(directory):
os.makedirs(directory)
return os.path.abspath(file_path)
def extract_features(img_tensor, model, boxes):
features = []
feature_extractor = nn.Sequential(*list(model.model.model[:10])).to(device)
with torch.no_grad():
feature_maps = feature_extractor(img_tensor)
for box in boxes:
if hasattr(box, 'xyxy') and isinstance(box.xyxy, torch.Tensor):
x1, y1, x2, y2 = map(int, box.xyxy[0])
elif hasattr(box, 'xyxy') and isinstance(box.xyxy, list):
x1, y1, x2, y2 = map(int, box.xyxy[0])
else:
print(f"Unexpected box format: {type(box)}")
continue
stride = img_tensor.shape[2] / feature_maps.shape[2]
fm_x1, fm_y1 = int(x1 / stride), int(y1 / stride)
fm_x2, fm_y2 = int(x2 / stride), int(y2 / stride)
box_features = feature_maps[:, :, fm_y1:fm_y2, fm_x1:fm_x2]
box_features = nn.functional.adaptive_avg_pool2d(box_features, (1, 1))
features.append(box_features.flatten().cpu().numpy())
return features
def preinit():
for folder in ["elements","models","recordings","snapshots"]:
if not os.path.exists(folder):
os.makedirs(folder)
print(f"-- created folder: {folder}")
def transform(xmin, ymin, xmax, ymax,pad):
x_scale = streamsize[0] / opsize[0]
y_scale = streamsize[1] / opsize[1]
new_xmin = int(xmin * x_scale)-pad
new_ymin = int(ymin * y_scale)-pad
new_xmax = int(xmax * x_scale)+pad
new_ymax = int(ymax * y_scale)+pad
return (new_xmin, new_ymin, new_xmax, new_ymax)
def resample(frame):
global zoom_factor, pan_x, pan_y, streamsize, opsize
zoomed_width = int(streamsize[0] / zoom_factor)
zoomed_height = int(streamsize[1] / zoom_factor)
center_x = streamsize[0] // 2 + pan_x
center_y = streamsize[1] // 2 + pan_y
start_x = max(0, min(streamsize[0] - zoomed_width, center_x - zoomed_width // 2))
start_y = max(0, min(streamsize[1] - zoomed_height, center_y - zoomed_height // 2))
zoomed_frame = frame[start_y:start_y+zoomed_height, start_x:start_x+zoomed_width]
return cv2.resize(zoomed_frame, opsize, interpolation=cv2.INTER_LINEAR_EXACT)
def rest(url, payload):
headers = {'Content-Type':'application/json'}
r = False
try:
data = data=json.dumps(payload)
response = requests.post(url, data, headers=headers)
if(response.status_code==200):
r=json.loads(response.text)
else:
print(response.text)
return False
except Exception as e:
print(f"-- error {e}")
finally:
return r
def millis():
return round(time.perf_counter() * 1000)
def timestamp():
return int(time.time())
labels = open(resolve("db/coco.names")).read().strip().split("\n")
classlist = [labels.index(x) for x in classlist]
object_count = 0
old_count = 0
obj_break = millis()
obj_idle = 0
obj_list = []
obj_max = 16
obj_avg = 0
fskip = False
last_fskip = timestamp()
app_start = timestamp()
obj_score = labels
bounding_boxes = []
obj_number = 1
def save_bounding_boxes(bounding_boxes, filename="db/bounding_boxes.pkl"):
with open(resolve(filename), 'wb') as f:
pickle.dump(bounding_boxes, f)
print(f"Saved {len(bounding_boxes)} bounding boxes to {filename}")
def load_bounding_boxes(filename="db/bounding_boxes.pkl"):
filename = resolve(filename)
if os.path.exists(filename):
with open(filename, 'rb') as f:
bounding_boxes = pickle.load(f)
print(f"Loaded {len(bounding_boxes)} bounding boxes from {filename}")
return bounding_boxes
else:
print(f"No saved bounding boxes found at {filename}")
return []
def crc32(string):
crc = 0xFFFFFFFF
for char in string:
byte = ord(char)
for _ in range(8):
if (crc ^ byte) & 1:
crc = (crc >> 1) ^ 0xEDB88320
else:
crc >>= 1
byte >>= 1
return crc ^ 0xFFFFFFFF
def genprompt(t):
if t in prompts:
return prompts[t]
return "describe this image in 5 words or less"
def center(xmin,ymin,xmax,ymax):
center_x = (xmin + xmax) // 2
center_y = (ymin + ymax) // 2
return (center_x, center_y)
def distance(x1,y1,x2,y2):
return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
def _size(x1,y1,x2,y2):
return abs(x1 - y2)
def bearing(x1, y1, x2, y2):
delta_x = x2 - x1
delta_y = y2 - y1
bearing_rad = math.atan2(delta_y, delta_x)
bearing_deg = math.degrees(bearing_rad)
return (bearing_deg + 360) % 360
def direction(bearing):
normalized_bearing = bearing % 360
directions = ["N", "NE", "E", "SE", "S", "SW", "W", "NW"]
index = round(normalized_bearing / 45) % 8
return directions[index]
def similar(img1, img2):
hist1 = cv2.calcHist([img1], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
hist2 = cv2.calcHist([img2], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
return cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL)
def match(img1, img2):
max_val = 0
try:
result = cv2.matchTemplate(img1, img2, cv2.TM_CCOEFF_NORMED)
_, max_val, _, _ = cv2.minMaxLoc(result)
except Exception as e:
max_val = similar(img1,img2)
#print(f"An error occurred: {e}")
finally:
return max_val
def open_app_folder():
app_folder = os.path.dirname(os.path.abspath(__file__))
if os.name == 'nt': # Windows
os.startfile(app_folder)
elif os.name == 'posix': # macOS and Linux
subprocess.call(['open' if os.name == 'darwin' else 'xdg-open', app_folder])
def mouse_callback(event, x, y, flags, param):
global drawing,draw_start_x,draw_start_y,draw_end_x,draw_end_y, dragging,drag_start_x,drag_start_y,zoom_factor,pan_x, pan_y,zoom_x,zoom_y
if event == cv2.EVENT_RBUTTONDOWN:
dragging = True
drag_start_x = x
drag_start_y = y
if event == cv2.EVENT_RBUTTONUP:
dragging = False
if event == cv2.EVENT_LBUTTONUP:
drawing = False
draw_end_x = 0
draw_end_y = 0
draw_start_x = 0
draw_start_y = 0
if event == cv2.EVENT_LBUTTONDOWN:
drawing = True
draw_end_x = 0
draw_end_y = 0
draw_start_x = x
draw_start_y = y
if event == cv2.EVENT_MOUSEWHEEL:
if(zoom_factor == 1.0):
pan_x = 0
pan_y = 0
if flags > 0:
zoom_factor = min(6.0, zoom_factor * 1.1)
else:
zoom_factor = max(1.0, zoom_factor / 1.1)
if event == cv2.EVENT_MOUSEMOVE:
if drawing:
draw_end_x = x
draw_end_y = y
if dragging:
dx = x - drag_start_x
dy = y - drag_start_y
pan_x -= int(dx * zoom_factor)
pan_y -= int(dy * zoom_factor)
drag_start_x = x
drag_start_y = y
class BoundingBox:
def __init__(self, name, points, size, image):
global obj_number
self.nr = obj_number
obj_number +=1
self.x, self.y = points
self.px=0
self.py=0
self.created = millis()
self.timestamp = self.created
self.size = size
self.sid = str(crc32(f'{self.x}-{self.y}-{self.timestamp}-{self.size}'))
self.name = name
self.checkin = True
self.detections = 0
self.distance = 0
self.idle = 0
self.image = image
self.desc = False
self.state = 0
self.seen = self.created
self.features = None
self.visible = True
self.init()
print("New object: "+self.name+"#"+str(self.nr)+" size:"+str(self.size))
self.save("elements/"+self.name+"-"+str(self.nr)+".png")
"""
vector_db.add_vector(self.features, {
'class': self.name,
'sid': self.sid
})"""
def hide(self):
self.visible = False
def show(self):
self.visible = True
def __getstate__(self):
state = self.__dict__.copy()
del state['image']
return state
def __setstate__(self, state):
self.__dict__.update(state)
self.image = None
def see(self):
self.seen = millis()
def ping(self):
self.timestamp = millis()
idle = self.timestamp-self.created
if(idle>=1000):
self.idle = idle // 1000
else:
self.idle = 0
return self.idle
def save(self,file):
cv2.imwrite(file, self.image)
def export(self):
_, buffer = cv2.imencode('.png', self.image)
base64_image = base64.b64encode(buffer.tobytes()).decode('utf-8')
return base64_image
def init(self):
self.min_x = self.x - stationary_val
self.max_x = self.x + stationary_val
self.min_y = self.y - (stationary_val)
self.max_y = self.y + (stationary_val)
def contains(self, x, y,time):
return (((self.checkin == False) and self.min_x <= x <= self.max_x) and (self.min_y <= y <= self.max_y) and (time-self.seen<point_timeout))
def update(self, time, new_x, new_y):
self.checkin = True
self.timestamp = time
idle = self.timestamp-self.created
if(idle>=1000):
self.idle = idle // 1000
else:
self.idle = 0
self.px = self.x
self.py = self.y
self.x = new_x
self.y = new_y
self.detections +=1
self.init()
def update_in_array(self, time, new_x, new_y, bounding_boxes):
for bbox in bounding_boxes:
if bbox.sid == self.sid:
bbox.update(time, new_x, new_y)
return True
return False
def resetIteration():
global bounding_boxes
[setattr(item, 'checkin', False) for item in bounding_boxes]
def closest(bounding_boxes, reference_point, class_name, size):
closest_bbox = False
min_distance = float('inf')
for bbox in bounding_boxes:
if(abs(bbox.size-size)>10):
continue
dx = bbox.x - reference_point[0]
dy = bbox.y - reference_point[1]
distance = math.sqrt(dx*dx + dy*dy)
if(distance<1 or distance > 300):
continue
if distance < min_distance:
min_distance = distance
closest_bbox = bbox
if(closest_bbox!=False and distance>0):
closest_bbox.distance = distance
closest_bbox.update(millis(),reference_point[0],reference_point[1])
return closest_bbox
def blur(image):
gray = cv2.cvtColor(image, _gray)
gx = cv2.Sobel(gray, cv2.CV_64F, 1, 0)
gy = cv2.Sobel(gray, cv2.CV_64F, 0, 1)
mag = np.sqrt(gx**2 + gy**2)
return np.mean(mag)
def find_closest_point(points, point):
closest_point = None
min_distance = float('inf')
for x, y in points:
distance = math.sqrt((x - point[0])**2 + (y - point[1])**2)
if distance < min_distance:
min_distance = distance
closest_point = (x, y)
return closest_point, min_distance
def findSimilar(ref):
closest_bbox = False
score = 0.85
for bbox in bounding_boxes:
s = similar(ref,bbox.image)
if(s>score):
score = s
closest_bbox = bbox
#print("similar:"+str(score))
return closest_bbox
def findMatch(ref):
closest_bbox = False
score = 0.96
for bbox in bounding_boxes:
s = match(ref,bbox.image)
if(s>score):
score = s
closest_bbox = bbox
#print("score:"+str(score))
return closest_bbox
def closestEx(bounding_boxes, reference_point,class_name,size):
return False
point = reference_point
found = []
for i in range(6):
c = closest(bounding_boxes,point,class_name,size)
if(c==False and i == 0):
return False
if(c==False and i>0):
return found[-1]
if(i==1 and found[-1].sid == c.sid):
return c
point = (c.x,c.y)
found.append(c)
#print("iteration "+str(i))
return found[-1]
def getObject(point,cname):
global bounding_boxes
x, y = point
time = millis()
for i, box in enumerate(bounding_boxes):
if(cname!=box.name):
continue
if box.contains(x, y, time):
box.update(time,x,y)
bounding_boxes[i].checkin = True
return bounding_boxes[i]
if (time-box.seen) >= point_timeout:
del bounding_boxes[i]
#if (time-box.seen) >= point_timeout:
# box.hide()
return False
def take_snapshot(frame):
global snapshot_directory
if not os.path.exists(snapshot_directory):
os.makedirs(snapshot_directory)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"snapshot_{timestamp}.jpg"
filepath = os.path.join(snapshot_directory, filename)
cv2.imwrite(filepath, frame)
print(f"Snapshot saved: {filepath}")
def start_recording(cap):
global recording, out
if not recording:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"recordings/recording_{timestamp}.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(filename, fourcc, 20, (640,480))
recording = True
print(f"Started recording: {filename}")
def stop_recording():
global recording, out
if recording:
out.release()
recording = False
print("Stopped recording")
def add(num):
if len(obj_list) >= obj_max:
obj_list.pop(0)
obj_list.append(num)
def average():
l = len(obj_list)
if(l<=0):
return 0
return round(sum(obj_list) / l)
def draw_dashed_rectangle(img, pt1, pt2, color, thickness=1, dash_length=8):
def draw_dashed_line(img, pt1, pt2, color, thickness, dash_length):
dist = np.sqrt((pt1[0]-pt2[0])**2 + (pt1[1]-pt2[1])**2)
dashes = int(dist / dash_length)
for i in range(dashes):
start = np.array([int(pt1[0] + (pt2[0]-pt1[0]) * i / dashes),
int(pt1[1] + (pt2[1]-pt1[1]) * i / dashes)])
end = np.array([int(pt1[0] + (pt2[0]-pt1[0]) * (i+0.5) / dashes),
int(pt1[1] + (pt2[1]-pt1[1]) * (i+0.5) / dashes)])
cv2.line(img, tuple(start), tuple(end), color, thickness)
draw_dashed_line(img, pt1, (pt2[0], pt1[1]), color, thickness, dash_length)
draw_dashed_line(img, (pt2[0], pt1[1]), pt2, color, thickness, dash_length)
draw_dashed_line(img, pt2, (pt1[0], pt2[1]), color, thickness, dash_length)
draw_dashed_line(img, (pt1[0], pt2[1]), pt1, color, thickness, dash_length)
return img
def generate_color_shades(num_classes):
colors = np.zeros((num_classes, 3), dtype=np.uint8)
green = [0, 200, 0]
orange = [0, 165, 255]
yellow = [0, 200, 255]
red = [0, 0, 255]
base_colors = [green, orange, yellow, red]
num_base_colors = len(base_colors)
for i in range(num_classes):
base_color_index = i % num_base_colors
base_color = np.array(base_colors[base_color_index])
shade_factor = (i // num_base_colors) / (num_classes // num_base_colors + 1)
shade = base_color * (1 - shade_factor) + np.array([128, 128, 128]) * shade_factor
colors[i] = shade.astype(np.uint8)
return colors
print(f"Starting up..")
print(torch.cuda.is_available())
print(torch.cuda.get_device_name(0))
print(torch.version.cuda)
print(f"PyTorch version: {torch.__version__}")
print(f"Torchvision version: {torchvision.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"CUDA version: {torch.version.cuda}")
colors = generate_color_shades(len(labels))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Initializing model..")
model = YOLO("models/"+model+".pt")
print(f"Loading model to {device}")
model.to(device)
#print("initializing vector store")
#vector_db = VectorDatabase(vector_dimension=vsize)
print("loading objects")
#bounding_boxes = load_bounding_boxes()
bounding_boxes = []
loop = True
cap = cv2.VideoCapture(rtsp_stream)
if(rtsp_stream==0):
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
fps = cap.get(cv2.CAP_PROP_FPS)
ret, img = cap.read()
window = str(rtsp_stream)
streamsize = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
if(streamsize[0]>opsize[0] or streamsize[1]>opsize[1]):
hdstream = True
print("HD stream mode enabled")
else:
print("Stream resolution matches to window size")
cv2.namedWindow(window, cv2.WINDOW_NORMAL)
cv2.resizeWindow(window, opsize[0]+uispace, opsize[1])
cv2.setWindowProperty(window, cv2.WND_PROP_TOPMOST, 1)
cv2.setMouseCallback(window, mouse_callback)
q = queue.Queue(maxsize=buffer)
def stream():
global cap, obj_idle, last_fskip, idle
if cap.isOpened():
ret, frame = cap.read()
while loop:
ret, frame = cap.read()
if ret:
if((obj_idle>0) and obj_idle>=idle_reset and (timestamp()-last_fskip>=30)):
last_fskip = timestamp()
q.queue.clear()
obj_idle = 0
print(f"Frame skip")
else:
q.put(frame)
else:
print("Can't receive frame, restarting video...")
cap.release()
cap = cv2.VideoCapture(rtsp_stream)
def fmatch(img1, img2):
gray1 = cv2.cvtColor(img1, _gray)
gray2 = cv2.cvtColor(img2, _gray)
orb = cv2.ORB_create()
kp1, des1 = orb.detectAndCompute(gray1, None)
kp2, des2 = orb.detectAndCompute(gray2, None)
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(des1, des2)
matches = sorted(matches, key=lambda x: x.distance)
img_matches = cv2.drawMatches(img1, kp1, img2, kp2, matches[:50], None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
src_pts = np.float32([kp1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
h, w = gray2.shape
aligned_img1 = cv2.warpPerspective(img1, M, (w, h))
diff = cv2.absdiff(cv2.cvtColor(aligned_img1, _gray), gray2)
_, thresh = cv2.threshold(diff, 30, 255, cv2.THRESH_BINARY)
kernel = np.ones((5,5), np.uint8)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
img1_contours = aligned_img1.copy()
img2_contours = img2.copy()
for contour in contours:
if cv2.contourArea(contour) > 100:
cv2.drawContours(img1_contours, [contour], 0, (0, 0, 255), 2)
cv2.drawContours(img2_contours, [contour], 0, (0, 255, 0), 2)
def selectObject(sid,x,y):
i = 0
while i < len(bounding_boxes):
#print(i)
bbox = bounding_boxes[i]
if bbox.sid == sid and bbox.checkin == False:
bbox.update(millis(),x,y)
bounding_boxes[i].checkin = True
return bounding_boxes[i]
else:
i += 1
return False
def find_similar_objects(query_vector, class_name, k=5):
results = vector_db.search_similar(query_vector, k)
_sid = False;
_c=25;
for metadata, distance in results:
if(distance >= 1):
continue;
if(distance<_c):
_c=distance
_sid = metadata['sid']
#print(f"SID: {metadata['sid']}")
#print(f"Distance: {distance}")
#print("---")
return _sid
def process(photo):
if hdstream==True:
img = resample(photo)
global obj_score, bounding_boxes
img_tensor = torch.from_numpy(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)).to(device).float() / 255.0
img_tensor = img_tensor.permute(2, 0, 1).unsqueeze(0)
with torch.no_grad():
results = model(img_tensor, verbose=False, iou = 0.45, agnostic_nms = True, half=False, max_det = 16, conf = min_confidence, classes = classlist)
obj_score = [0 for _ in range(len(obj_score))]
c = 0;
points = []
boxes = [box for r in results for box in r.boxes]
features = extract_features(img_tensor, model, boxes)
now = millis()
resetIteration()
for i, box in enumerate(boxes):
class_id = int(box.cls)
class_name = labels[class_id]
confidence = float(box.conf)
c = c+1
if((class_name in class_confidence) and (confidence<=class_confidence[class_name])):
continue
if(confidence<=min_confidence):
continue
xmin, ymin, xmax, ymax = box.xyxy[0]
xmin, ymin, xmax, ymax = map(int, [xmin, ymin, xmax, ymax])
width = xmax-xmin
height = ymax-ymin
if(xmin==0 or ymin ==0 or xmax==0 or ymax==0 or xmax == img.shape[1] or ymax == img.shape[0]):
continue
if(class_name=="car" and ((width>height and (width/height)>=2) or (width<min_size or height<min_size))):
continue
if(zoom_factor > 1.0):
color = colors[class_id].tolist()
alpha = 0.35
color_with_alpha = color + [alpha]
text = f"{class_name}"+" "+str(round(confidence, 6))
text_offset_x = xmin
text_offset_y = ymin - 5
overlay = img[ymin:ymax+1, xmin:xmax+1].copy()
cv2.rectangle(overlay, (0, 0), (xmax-xmin, ymax-ymin), color_with_alpha, thickness=-1)
cv2.addWeighted(overlay, alpha, img[ymin:ymax+1, xmin:xmax+1], 1 - alpha, 0, img[ymin:ymax+1, xmin:xmax+1])
draw_dashed_rectangle(img,(xmin, ymin),(xmax, ymax),color,1,8)
cv2.putText(img, text, (text_offset_x, text_offset_y), _font, 0.35, (0, 0, 0), 2)
cv2.putText(img, text, (text_offset_x, text_offset_y), _font, 0.35, (255, 255, 255), 1)
continue
idx = class_id
obj_score[idx] = obj_score[idx]+1
point = center(xmin,ymin,xmax,ymax)
size = _size(xmin,ymin,xmax,ymax)
closest, distance = find_closest_point(points, point)
obj = getObject(point,class_name);
if(obj != False):
if(distance<6.0):
continue;
points.append(point)
obj.see()
if(obj.desc!=False):
sid = obj.desc
else:
sid = obj.name+"#"+str(obj.nr)
color = colors[class_id].tolist()
cv2.circle(img, point, 1, (0, 0, 255), 2)
cv2.putText(img, sid, (obj.x,obj.y - 18), _font, 0.35, (0, 0, 0), 2)
cv2.putText(img, sid, (obj.x,obj.y - 18), _font, 0.35, (255,255,255), 1)
idle = str(obj.idle)+"s"
cv2.putText(img, idle, (obj.x,obj.y - 6), _font, 0.35, (0, 0, 0), 2)
cv2.putText(img, idle, (obj.x,obj.y - 6), _font, 0.35, (200, 200, 200), 1)
else:
obj = closestEx(bounding_boxes,point,class_name,size)
if(obj != False):
print("picked up "+str(obj.nr)+"#"+obj.name+" from "+str(obj.distance))
cv2.line(img, point, (obj.x, obj.y), (0, 255, 255), 4)
obj.see()
if(obj.desc!=False):
sid = obj.desc
else:
sid = obj.name+"#"+str(obj.nr)
cv2.circle(img, point, 1, (0, 255, 0), 2)
cv2.putText(img, sid, (obj.x,obj.y - 18), _font, 0.35, (0, 0, 0), 2)
cv2.putText(img, sid, (obj.x,obj.y - 18), _font, 0.35, (255,255,255), 1)
idle = str(obj.idle)+"s"
cv2.putText(img, idle, (obj.x,obj.y - 6), _font, 0.35, (0, 0, 0), 2)
cv2.putText(img, idle, (obj.x,obj.y - 6), _font, 0.35, (200, 200, 200), 1)
else:
if(distance<6.0):
continue;
text = f"{class_name}"+" "+str(round(confidence, 6))
text_offset_x = xmin
text_offset_y = ymin - 5
#_sid = find_similar_objects(features[i],class_name)
_sid = False
if(_sid != False):
obj = selectObject(_sid,point[0],point[1])
print(str(obj))
if(obj != False):
print("restored "+str(obj.nr)+"#"+obj.name+"#"+str(obj.desc)+" from vector store")
cv2.line(img, point, (obj.px, obj.py), (0, 255, 0), 4)
cv2.circle(img, point, 1, (0, 255, 0), 3)
obj.see()
sid = obj.desc if obj.desc != False else obj.name + "#" + str(obj.nr)
cv2.putText(img, sid, (obj.x,obj.y - 18), _font, 0.35, (0, 0, 0), 2)
cv2.putText(img, sid, (obj.x,obj.y - 18), _font, 0.35, (255,255,255), 1)
idle = str(obj.idle)+"s"
cv2.putText(img, idle, (obj.x,obj.y - 6), _font, 0.35, (0, 0, 0), 2)
cv2.putText(img, idle, (obj.x,obj.y - 6), _font, 0.35, (200, 200, 200), 1)
else:
if(distance<6.0):
continue;
cv2.circle(img, point, 1, (255, 255, 0), 2)
cv2.putText(img, text, (text_offset_x, text_offset_y), _font, 0.35, (0, 0, 0), 2)
cv2.putText(img, text, (text_offset_x, text_offset_y), _font, 0.35, (255,255,255), 1)
qxmin,qymin,qxmax,qymax = transform(xmin,ymin,xmax,ymax,padding)
snap = photo[qymin:qymax, qxmin:qxmax]
item = BoundingBox(class_name,point,size,snap,features[i])
bounding_boxes.append(item)
else:
if(distance<6.0):
continue;
cv2.circle(img, point, 1, (255, 255, 0), 2)
cv2.putText(img, text, (text_offset_x, text_offset_y), _font, 0.35, (0, 0, 0), 2)
cv2.putText(img, text, (text_offset_x, text_offset_y), _font, 0.35, (255,255,255), 1)
qxmin,qymin,qxmax,qymax = transform(xmin,ymin,xmax,ymax,padding)
snap = photo[qymin:qymax, qxmin:qxmax]
item = BoundingBox(class_name,point,size,snap)
bounding_boxes.append(item)
if(zoom_factor > 1.0):
add(c)
return img
for obj in bounding_boxes:
if(obj.checkin==False and obj.detections>=3 and obj.idle>1 and obj.idle < 8):
closest, distance = find_closest_point(points, (obj.x,obj.y))
if(distance<6.0):
continue;
obj.ping()
if(now-obj.seen>point_timeout):
continue
if(obj.desc!=False):
sid = obj.desc
else:
sid = obj.name+"#"+str(obj.nr)
idle = str(obj.idle)+"s"
cv2.putText(img, sid, (obj.x,obj.y - 18), _font, 0.35, (0, 0, 0), 2)
cv2.putText(img, sid, (obj.x,obj.y - 18), _font, 0.35, (255,255,255), 1)
cv2.circle(img, (obj.x,obj.y), 1, (0, 255, 255), 2)
cv2.putText(img, idle, (obj.x,obj.y - 6), _font, 0.35, (0, 0, 0), 2)
cv2.putText(img, idle, (obj.x,obj.y - 6), _font, 0.35, (200, 200, 200), 1)
add(c);
return img
def postreview():
global bounding_boxes, loop
while loop:
for box in bounding_boxes:
if (box.state == 0) and (box.image is not None):
res = rest(ollama, {
"model": ollama_model,
"prompt": genprompt(box.name),
"images": [box.export()],
"stream": False
})
if res != False:
box.desc = res["response"].strip()
box.state = 1
time.sleep(0.1)
bthread = threading.Thread(target=postreview)
bthread.start()
sthread = threading.Thread(target=stream)
sthread.start()
def uilayer(img):
height, width = img.shape[:2]
new_height = height
new_width = width + uispace
background_color = [64, 64, 64]
enlarged_img = np.full((new_height, new_width, 3), background_color, dtype=np.uint8)
enlarged_img[:height, :width] = img
cv2.putText(enlarged_img, 'Your text description here', (width+24, 24), _font, 0.5, (255, 255, 255), 1, 1)
return enlarged_img
while loop:
if ((q.empty() != True) and (fskip != True)):
img = q.get_nowait()
key = cv2.waitKey(1) & 0xFF
if key == 32:
print("frame skip")
q.queue.clear()
if key == ord('q'):
loop = False