-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathALGLIBHelper.js
227 lines (212 loc) · 7.42 KB
/
ALGLIBHelper.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
//Ceres Helper JS
export class Alglib {
constructor() {
this.loaded = false
this.fxn = []
this.equality_constraint = []
this.inequality_constraint = []
this.callback = []
this.stat = [];
this.jacobian = [];
this.countEvals = 0
// Create example data to test float_multiply_array
this.varLength = 0
this.maxLength = 1000
this.data = new Float64Array(this.maxLength);
this.promise = new Promise(function(resolve, reject){
ALGLIBModule().then(function(Module){
this.instance = new Module.ALGLIBjs
// Get data byte size, allocate memory on Emscripten heap, and get pointer
let nDataBytes = this.data.length * this.data.BYTES_PER_ELEMENT;
let dataPtr = Module._malloc(nDataBytes);
// Copy data to Emscripten heap (directly accessed from Module.HEAPU8)
this.dataHeap = new Float64Array(Module.HEAPF64.buffer, dataPtr, nDataBytes);
this.dataHeap.set(new Float64Array(this.data.buffer));
this.loaded = true
resolve()
}.bind(this))
}.bind(this))
}
// Method
add_function(fn) {
this.fxn.push(fn)
}
// Method
add_greater_than_or_equal_to_constraint(fn) {
let f = function(x){
return -fn(x);
}
this.equality_constraint.push(f)
}
// Method
add_less_than_or_equal_to_constraint(fn) {
this.equality_constraint.push(fn)
}
// Method
add_equality_constraint(fn) {
this.equality_constraint.push(fn)
}
// Method
add_inequality_constraint(fn) {
this.inequality_constraint.push(fn)
}
add_jacobian(fn){
this.jacobian.push(fn)
}
// Method
add_callback(fn) {
this.callback.push(fn)
}
reset(){
this.instance.reset();
this.fxn = []
this.equality_constraint = []
this.inequality_constraint = []
this.callback = []
this.jacobian = []
}
//Method
load_fxns(){
for(let i = 0; i < this.fxn.length; i++){
let newfunc = function f(){
let x = new Float64Array(this.dataHeap.buffer, this.dataHeap.byteOffset, this.varLength);
if(this.stat.length<10000){
let str = ""
for(let j=0; j< x.length; j++){
str += x[j].toExponential(5)+"\t"
}
this.stat.push(str)
}
this.countEvals++
return this.fxn[i](x)
}
this.instance.add_function(newfunc.bind(this));
}
for(let i = 0; i < this.jacobian.length; i++){
let newfunc = function f(j){
let x = new Float64Array(this.dataHeap.buffer, this.dataHeap.byteOffset, this.varLength);
this.countEvals++
return this.jacobian[i](x,j)
}
this.instance.add_jacobian(newfunc.bind(this));
}
for(let i = 0; i < this.equality_constraint.length; i++){
let newfunc = function f(){
let x = new Float64Array(this.dataHeap.buffer, this.dataHeap.byteOffset, this.varLength);
this.countEvals++
return this.equality_constraint[i](x)
}
this.instance.add_equality_constraint(newfunc.bind(this));
}
for(let i = 0; i < this.inequality_constraint.length; i++){
let newfunc = function f(){
let x = new Float64Array(this.dataHeap.buffer, this.dataHeap.byteOffset, this.varLength);
this.countEvals++
return this.inequality_constraint[i](x)
}
this.instance.add_inequality_constraint(newfunc.bind(this));
}
for(let i = 0; i < this.callback.length; i++){
let newfunc = function f(evaluate_jacobians, new_evaluation_point){
let x = new Float64Array(this.dataHeap.buffer, this.dataHeap.byteOffset, this.varLength);
this.countEvals++
return this.callback[i](x, evaluate_jacobians, new_evaluation_point);
}
this.instance.add_callback(newfunc.bind(this));
}
}
solve(mode, xi=null, xs=[], max_iterations=50000, penalty=50.0, radius=0.1, diffstep=0.000001, stop_threshold=0.00001) {
if(this.loaded == true){
const t0 = performance.now();
if(this.jacobian.length>0){
let jacobian_rows = 1+this.equality_constraint.length+this.inequality_constraint.length
if(jacobian_rows != this.jacobian.length){throw("Error: not enough jacobian functions defined. Define one for the optimization function and one for each constraint. Need "+jacobian_rows)}
}
this.countEvals = 0
this.stat = []
let str = ""
for(let j=0; j< xi.length; j++){
str += " x"+j+"\t\t"
}
this.stat.push(str)
this.mode = mode
this.minmax = 0
if(mode == "min"){this.minmax = 1}
else if(mode == "max"){this.minmax = 2}
if(this.varLength <= this.maxLength ){this.varLength = xi.length}
else{throw "Max number of vars exceeded"}
this.load_fxns()
for(let i = 0; i < this.varLength; i++){
if(Number.isFinite(xs[i])){
this.dataHeap[i] = xs[i];
}
else{
this.dataHeap[i] = 1
}
}
this.instance.set_xs(this.dataHeap.byteOffset, this.varLength);
for(let i = 0; i < this.varLength; i++){
this.dataHeap[i] = xi[i];
}
this.instance.setup_x(this.dataHeap.byteOffset, this.varLength);
this.instance.solve(this.minmax, max_iterations, penalty, radius, diffstep, stop_threshold)
let x = new Float64Array(this.dataHeap.buffer, this.dataHeap.byteOffset, this.varLength)
let normalArray = [].slice.call(x);
this.results = normalArray
this.termType = this.instance.get_status()
const t1 = performance.now();
this.timing = "Call to optimizer took "+(t1 - t0)+" milliseconds.";
return true
}
else{
console.log("Warning the Alglib.js wasm has not been loaded yet.")
return false
}
}
get_results(){
return this.results
}
get_status(){
/*optimization report. You should check Rep.TerminationType
in order to distinguish successful termination from
unsuccessful one:
* -8 internal integrity control detected infinite or
NAN values in function/gradient. Abnormal
termination signalled.
* -3 box constraints are inconsistent
* -1 inconsistent parameters were passed:
* penalty parameter for minnssetalgoags() is zero,
but we have nonlinear constraints set by minnssetnlc()
* 2 sampling radius decreased below epsx
* 7 stopping conditions are too stringent,
further improvement is impossible,
X contains best point found so far.
* 8 User requested termination via minnsrequesttermination()*/
var termTypeText = ""
if(this.termType == 2){termTypeText = "Found local max/min. Sampling radius decreased below the threshold value"}
else if(this.termType == 7){termTypeText = "Stopping conditions are too stringent. Further improvement is impossible. X contains best point found so far."}
else if(this.termType == 8){termTypeText = "User requested termination"}
else if(this.termType == -8){termTypeText = "Internal integrity control detected infinite or NAN values in function/gradient. Abnormal termination signalled."}
else if(this.termType == -3){termTypeText = "Box constraints are inconsistent"}
else if(this.termType == -1){termTypeText = "Inconsistent parameters were passed"}
else{termTypeText = "Unknown return type"}
return termTypeText
}
get_report(){
let x = this.get_results()
var reportText = "The solver attempted find the "+this.mode+" of f(x) subject to "+this.equality_constraint.length+" equality constraints and "+this.inequality_constraint.length+" inequality constraints.\
\nTermination condition: \""+this.get_status()+"\"\
\nThe final value of the optimization function was f(x) = "+this.fxn[0](x)+"\
\nThe final variable values were: ["+this.get_results()+"]\
\nNumber of function evaluations: "+this.countEvals+"\
\n"+this.timing+"\
\n\nIteration Report:\
\n"+this.stat.join("\n")+"\
\n"
return reportText
}
remove(){
this.loaded == false;
this.instance.delete();
}
}