-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegment.py
108 lines (64 loc) · 2.45 KB
/
segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import torchvision
print("PyTorch version:", torch.__version__)
print("Torchvision version:", torchvision.__version__)
print("CUDA is available:", torch.cuda.is_available())
import numpy as np
import matplotlib.pyplot as plt
import cv2
import sys
sys.path.append("..")
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
#Change file
image = cv2.imread('YOURPICTURE.png')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Optional: plot file
# plt.figure(figsize=(10,10))
# plt.imshow(image)
# plt.axis('off')
# plt.show()
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
# device = "cuda"
device = "cpu"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
# There are several tunable parameters in automatic mask generation that control
# how densely points are sampled and what the thresholds are for removing low
# quality or duplicate masks. Additionally, generation can be automatically
# run on crops of the image to get improved performance on smaller objects,
# and post-processing can remove stray pixels and holes.
# Here is an example configuration that samples more masks:
#https://github.com/facebookresearch/segment-anything/blob/9e1eb9fdbc4bca4cd0d948b8ae7fe505d9f4ebc7/segment_anything/automatic_mask_generator.py#L35
#Rerun the following with a few settings, ex. 0.86 & 0.9 for iou_thresh
# and 0.92 and 0.96 for score_thresh
mask_generator_ = SamAutomaticMaskGenerator(
model=sam,
points_per_side=32,
pred_iou_thresh=0.9,
stability_score_thresh=0.96,
crop_n_layers=1,
crop_n_points_downscale_factor=2,
min_mask_region_area=100, # Requires open-cv to run post-processing
)
masks = mask_generator_.generate(image)
def display_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
polygons = []
color = []
for ann in sorted_anns:
m = ann['segmentation']
img = np.ones((m.shape[0], m.shape[1], 3))
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
img[:,:,i] = color_mask[i]
ax.imshow(np.dstack((img, m*0.35)))
plt.figure(figsize=(10,10))
plt.imshow(image)
display_anns(masks)
plt.axis('off')
plt.show()