diff --git a/docs/examples/broadcast_tracking_data.ipynb b/docs/examples/broadcast_tracking_data.ipynb
index b6ed5a5a..09aaaa55 100644
--- a/docs/examples/broadcast_tracking_data.ipynb
+++ b/docs/examples/broadcast_tracking_data.ipynb
@@ -32,7 +32,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 1,
"metadata": {
"scrolled": true
},
@@ -49,7 +49,7 @@
" raw_data=tracking_file,\n",
" limit=100)\n",
"\n",
- "df = dataset.to_pandas()"
+ "df = dataset.to_df()"
]
},
{
@@ -63,7 +63,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 2,
"metadata": {},
"outputs": [
{
@@ -89,7 +89,7 @@
" 'Serge Gnabry (22)']"
]
},
- "execution_count": 5,
+ "execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
@@ -103,7 +103,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 3,
"metadata": {},
"outputs": [
{
@@ -135,7 +135,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 4,
"metadata": {},
"outputs": [
{
@@ -173,7 +173,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 5,
"metadata": {},
"outputs": [
{
@@ -199,14 +199,14 @@
"
| \n",
" period_id | \n",
" timestamp | \n",
+ " frame_id | \n",
" ball_state | \n",
" ball_owning_team_id | \n",
" ball_x | \n",
" ball_y | \n",
+ " ball_z | \n",
" away_23_x | \n",
" away_23_y | \n",
- " away_23_d | \n",
- " away_23_s | \n",
" ... | \n",
" away_14_d | \n",
" away_14_s | \n",
@@ -225,14 +225,14 @@
" 0 | \n",
" 1 | \n",
" 11.2 | \n",
+ " 1523 | \n",
" None | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
+ " NaN | \n",
" 0.747489 | \n",
" 0.098509 | \n",
- " NaN | \n",
- " NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
@@ -249,14 +249,14 @@
" 1 | \n",
" 1 | \n",
" 11.3 | \n",
+ " 1524 | \n",
" None | \n",
" NaN | \n",
" 0.791347 | \n",
" -0.020033 | \n",
+ " 2.243712 | \n",
" 0.745323 | \n",
" 0.099367 | \n",
- " NaN | \n",
- " NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
@@ -273,14 +273,14 @@
" 2 | \n",
" 1 | \n",
" 11.4 | \n",
+ " 1525 | \n",
" None | \n",
" NaN | \n",
" 0.772630 | \n",
" -0.009469 | \n",
+ " 2.534799 | \n",
" 0.742956 | \n",
" 0.099743 | \n",
- " NaN | \n",
- " NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
@@ -297,14 +297,14 @@
" 3 | \n",
" 1 | \n",
" 11.5 | \n",
+ " 1526 | \n",
" None | \n",
" NaN | \n",
" 0.754625 | \n",
" 0.001612 | \n",
+ " 2.659813 | \n",
" 0.740386 | \n",
" 0.099638 | \n",
- " NaN | \n",
- " NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
@@ -321,14 +321,14 @@
" 4 | \n",
" 1 | \n",
" 11.6 | \n",
+ " 1527 | \n",
" None | \n",
" NaN | \n",
" 0.737330 | \n",
" 0.013210 | \n",
+ " 2.618755 | \n",
" 0.737875 | \n",
" 0.096646 | \n",
- " NaN | \n",
- " NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
@@ -343,42 +343,42 @@
" \n",
" \n",
"\n",
- "5 rows × 90 columns
\n",
+ "5 rows × 92 columns
\n",
""
],
"text/plain": [
- " period_id timestamp ball_state ball_owning_team_id ball_x ball_y \\\n",
- "0 1 11.2 None NaN NaN NaN \n",
- "1 1 11.3 None NaN 0.791347 -0.020033 \n",
- "2 1 11.4 None NaN 0.772630 -0.009469 \n",
- "3 1 11.5 None NaN 0.754625 0.001612 \n",
- "4 1 11.6 None NaN 0.737330 0.013210 \n",
+ " period_id timestamp frame_id ball_state ball_owning_team_id ball_x \\\n",
+ "0 1 11.2 1523 None NaN NaN \n",
+ "1 1 11.3 1524 None NaN 0.791347 \n",
+ "2 1 11.4 1525 None NaN 0.772630 \n",
+ "3 1 11.5 1526 None NaN 0.754625 \n",
+ "4 1 11.6 1527 None NaN 0.737330 \n",
"\n",
- " away_23_x away_23_y away_23_d away_23_s ... away_14_d away_14_s \\\n",
- "0 0.747489 0.098509 NaN NaN ... NaN NaN \n",
- "1 0.745323 0.099367 NaN NaN ... NaN NaN \n",
- "2 0.742956 0.099743 NaN NaN ... NaN NaN \n",
- "3 0.740386 0.099638 NaN NaN ... NaN NaN \n",
- "4 0.737875 0.096646 NaN NaN ... NaN NaN \n",
+ " ball_y ball_z away_23_x away_23_y ... away_14_d away_14_s \\\n",
+ "0 NaN NaN 0.747489 0.098509 ... NaN NaN \n",
+ "1 -0.020033 2.243712 0.745323 0.099367 ... NaN NaN \n",
+ "2 -0.009469 2.534799 0.742956 0.099743 ... NaN NaN \n",
+ "3 0.001612 2.659813 0.740386 0.099638 ... NaN NaN \n",
+ "4 0.013210 2.618755 0.737875 0.096646 ... NaN NaN \n",
"\n",
- " home_9_x home_9_y home_9_d home_9_s home_anon_75_x home_anon_75_y \\\n",
- "0 NaN NaN NaN NaN NaN NaN \n",
- "1 NaN NaN NaN NaN NaN NaN \n",
- "2 NaN NaN NaN NaN NaN NaN \n",
- "3 NaN NaN NaN NaN NaN NaN \n",
- "4 NaN NaN NaN NaN NaN NaN \n",
+ " home_9_x home_9_y home_9_d home_9_s home_anon_75_x home_anon_75_y \\\n",
+ "0 NaN NaN NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN NaN NaN \n",
+ "3 NaN NaN NaN NaN NaN NaN \n",
+ "4 NaN NaN NaN NaN NaN NaN \n",
"\n",
- " home_anon_75_d home_anon_75_s \n",
- "0 NaN NaN \n",
- "1 NaN NaN \n",
- "2 NaN NaN \n",
- "3 NaN NaN \n",
- "4 NaN NaN \n",
+ " home_anon_75_d home_anon_75_s \n",
+ "0 NaN NaN \n",
+ "1 NaN NaN \n",
+ "2 NaN NaN \n",
+ "3 NaN NaN \n",
+ "4 NaN NaN \n",
"\n",
- "[5 rows x 90 columns]"
+ "[5 rows x 92 columns]"
]
},
- "execution_count": 10,
+ "execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -411,7 +411,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.9"
+ "version": "3.10.6"
},
"toc": {
"base_numbering": 1,
diff --git a/docs/examples/code_data.ipynb b/docs/examples/code_data.ipynb
index 9e4adcfb..d97228f1 100644
--- a/docs/examples/code_data.ipynb
+++ b/docs/examples/code_data.ipynb
@@ -189,7 +189,7 @@
}
],
"source": [
- "code_dataset.to_pandas()"
+ "code_dataset.to_df()"
]
},
{
@@ -279,7 +279,7 @@
],
"source": [
"passes = code_dataset.filter(lambda code: code.code == 'PASS')\n",
- "passes.to_pandas()"
+ "passes.to_df()"
]
},
{
@@ -359,9 +359,23 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 6,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/koen/Developer/Projects/PySport/kloppy/.venv/lib/python3.10/site-packages/kloppy-3.7.1-py3.10.egg/kloppy/_providers/statsbomb.py:67: UserWarning: \n",
+ "\n",
+ "You are about to use StatsBomb public data.\n",
+ "By using this data, you are agreeing to the user agreement. \n",
+ "The user agreement can be found here: https://github.com/statsbomb/open-data/blob/master/LICENSE.pdf\n",
+ "\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ],
"source": [
"from kloppy import statsbomb\n",
"\n",
@@ -370,7 +384,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -405,7 +419,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 8,
"metadata": {},
"outputs": [
{
@@ -785,18 +799,18 @@
"27 Lionel Andrés Messi Cuccittini Barcelona "
]
},
- "execution_count": 14,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "code_dataset.to_pandas()"
+ "code_dataset.to_df()"
]
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 9,
"metadata": {},
"outputs": [
{
@@ -1213,7 +1227,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@@ -1245,7 +1259,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.9"
+ "version": "3.10.6"
}
},
"nbformat": 4,
diff --git a/docs/examples/config.ipynb b/docs/examples/config.ipynb
index ae34daa3..6f78ed7a 100644
--- a/docs/examples/config.ipynb
+++ b/docs/examples/config.ipynb
@@ -12,7 +12,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 5,
"id": "e8979b51",
"metadata": {},
"outputs": [],
@@ -32,7 +32,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 6,
"id": "b70b22c9",
"metadata": {},
"outputs": [
@@ -41,11 +41,13 @@
"text/plain": [
"{'cache': '/Users/koen/kloppy_cache',\n",
" 'coordinate_system': 'kloppy',\n",
+ " 'event_factory': None,\n",
" 'adapters.http.basic_authentication': None,\n",
- " 'adapters.s3.s3fs': None}"
+ " 'adapters.s3.s3fs': None,\n",
+ " 'dataframe.engine': 'pandas'}"
]
},
- "execution_count": 5,
+ "execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -56,7 +58,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 7,
"id": "9d75b69b",
"metadata": {},
"outputs": [
@@ -66,7 +68,7 @@
"'kloppy'"
]
},
- "execution_count": 6,
+ "execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -91,6 +93,19 @@
"id": "1ba6227a",
"metadata": {},
"outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/koen/Developer/Projects/PySport/kloppy/.venv/lib/python3.10/site-packages/kloppy-3.7.1-py3.10.egg/kloppy/_providers/statsbomb.py:67: UserWarning: \n",
+ "\n",
+ "You are about to use StatsBomb public data.\n",
+ "By using this data, you are agreeing to the user agreement. \n",
+ "The user agreement can be found here: https://github.com/statsbomb/open-data/blob/master/LICENSE.pdf\n",
+ "\n",
+ " warnings.warn(\n"
+ ]
+ },
{
"data": {
"text/plain": [
@@ -124,7 +139,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 9,
"id": "6fc5b89c",
"metadata": {},
"outputs": [
@@ -137,13 +152,26 @@
"After context: opta\n"
]
},
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/koen/Developer/Projects/PySport/kloppy/.venv/lib/python3.10/site-packages/kloppy-3.7.1-py3.10.egg/kloppy/_providers/statsbomb.py:67: UserWarning: \n",
+ "\n",
+ "You are about to use StatsBomb public data.\n",
+ "By using this data, you are agreeing to the user agreement. \n",
+ "The user agreement can be found here: https://github.com/statsbomb/open-data/blob/master/LICENSE.pdf\n",
+ "\n",
+ " warnings.warn(\n"
+ ]
+ },
{
"data": {
"text/plain": [
- "StatsbombCoordinateSystem(normalized=False, length=120, width=80)"
+ "StatsBombCoordinateSystem(normalized=False, length=120, width=80)"
]
},
- "execution_count": 15,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -175,7 +203,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.9"
+ "version": "3.10.6"
}
},
"nbformat": 4,
diff --git a/docs/examples/event_data.ipynb b/docs/examples/event_data.ipynb
index 60ad712d..10fb241f 100644
--- a/docs/examples/event_data.ipynb
+++ b/docs/examples/event_data.ipynb
@@ -22,7 +22,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 55,
"metadata": {
"scrolled": true
},
@@ -44,7 +44,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
@@ -61,7 +61,7 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 57,
"metadata": {},
"outputs": [
{
@@ -80,7 +80,7 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 58,
"metadata": {},
"outputs": [
{
@@ -106,7 +106,7 @@
" 'Marc-André ter Stegen (1)']"
]
},
- "execution_count": 31,
+ "execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
@@ -117,7 +117,7 @@
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 59,
"metadata": {},
"outputs": [
{
@@ -126,7 +126,7 @@
"'statsbomb team id: 217 - 206'"
]
},
- "execution_count": 32,
+ "execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
@@ -138,7 +138,7 @@
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 60,
"metadata": {},
"outputs": [
{
@@ -164,7 +164,7 @@
" 'Marc-André ter Stegen id=20055']"
]
},
- "execution_count": 33,
+ "execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
@@ -176,7 +176,7 @@
},
{
"cell_type": "code",
- "execution_count": 34,
+ "execution_count": 61,
"metadata": {},
"outputs": [
{
@@ -206,7 +206,7 @@
},
{
"cell_type": "code",
- "execution_count": 35,
+ "execution_count": 62,
"metadata": {},
"outputs": [
{
@@ -265,7 +265,7 @@
},
{
"cell_type": "code",
- "execution_count": 36,
+ "execution_count": 63,
"metadata": {},
"outputs": [
{
@@ -301,18 +301,32 @@
"source": [
"## Use metadata when transforming to pandas dataframe\n",
"\n",
- "The metadata can also be used when transforming a dataset to a pandas dataframe. The `additional_columns` argument should be passed to `to_pandas`. "
+ "The metadata can also be used when transforming a dataset to a pandas dataframe. Using keyword argument additional columns can be created."
]
},
{
"cell_type": "code",
- "execution_count": 37,
+ "execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
- "See Full Dataframe in Mito
\n",
+ "\n",
+ "\n",
+ "
\n",
" \n",
" \n",
" | \n",
@@ -377,7 +391,8 @@
" Barcelona | \n",
"
\n",
" \n",
- "
"
+ "
\n",
+ "
"
],
"text/plain": [
" event_id event_type result timestamp \\\n",
@@ -395,18 +410,17 @@
"4 5477 Ousmane Dembélé Barcelona "
]
},
- "execution_count": 37,
+ "execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
- "dataframe = dataset.to_pandas(\n",
- " additional_columns={\n",
- " 'player_name': lambda event: str(event.player),\n",
- " 'team_name': lambda event: str(event.player.team)\n",
- " }\n",
+ "dataframe = dataset.to_df(\n",
+ " \"*\", # Get all default columns\n",
+ " player_name=lambda event: str(event.player),\n",
+ " team_name=lambda event: str(event.player.team)\n",
")\n",
"\n",
"dataframe[[\n",
@@ -426,13 +440,27 @@
},
{
"cell_type": "code",
- "execution_count": 38,
+ "execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
- "See Full Dataframe in Mito
\n",
+ "\n",
+ "\n",
+ "
\n",
" \n",
" \n",
" | \n",
@@ -497,7 +525,9 @@
" 9.721368 | \n",
"
\n",
" \n",
- "
"
+ "
\n",
+ "
1160 rows × 2 columns
\n",
+ "
"
],
"text/plain": [
" angle_to_goal distance_to_goal\n",
@@ -516,7 +546,7 @@
"[1160 rows x 2 columns]"
]
},
- "execution_count": 38,
+ "execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
@@ -541,7 +571,7 @@
},
{
"cell_type": "code",
- "execution_count": 39,
+ "execution_count": 66,
"metadata": {},
"outputs": [
{
@@ -557,7 +587,7 @@
"{'angle_to_goal': 90.48146580583835}"
]
},
- "execution_count": 39,
+ "execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
@@ -584,13 +614,27 @@
},
{
"cell_type": "code",
- "execution_count": 40,
+ "execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
- "See Full Dataframe in Mito
\n",
+ "\n",
+ "\n",
+ "
\n",
" \n",
" \n",
" | \n",
@@ -703,7 +747,9 @@
" NaN | \n",
"
\n",
" \n",
- "
"
+ "
\n",
+ "
1160 rows × 6 columns
\n",
+ "
"
],
"text/plain": [
" period_id timestamp coordinates_x coordinates_y end_coordinates_x \\\n",
@@ -735,7 +781,7 @@
"[1160 rows x 6 columns]"
]
},
- "execution_count": 40,
+ "execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
@@ -761,13 +807,27 @@
},
{
"cell_type": "code",
- "execution_count": 41,
+ "execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
- "See Full Dataframe in Mito
\n",
+ "\n",
+ "\n",
+ "
\n",
" \n",
" \n",
" | \n",
@@ -783,35 +843,35 @@
" 1 | \n",
" 0.098 | \n",
" 1234 | \n",
- " 3 | \n",
+ " 62 | \n",
"
\n",
" \n",
" 1 | \n",
" 1 | \n",
" 3.497 | \n",
" 1234 | \n",
- " 243 | \n",
+ " 252 | \n",
"
\n",
" \n",
" 2 | \n",
" 1 | \n",
" 6.785 | \n",
" 1234 | \n",
- " 74 | \n",
+ " 194 | \n",
"
\n",
" \n",
" 3 | \n",
" 1 | \n",
" 8.431 | \n",
" 1234 | \n",
- " 237 | \n",
+ " 121 | \n",
"
\n",
" \n",
" 4 | \n",
" 1 | \n",
" 10.433 | \n",
" 1234 | \n",
- " 165 | \n",
+ " 161 | \n",
"
\n",
" \n",
" ... | \n",
@@ -825,57 +885,59 @@
" 2 | \n",
" 2787.914 | \n",
" 1234 | \n",
- " 79 | \n",
+ " 230 | \n",
"
\n",
" \n",
" 1156 | \n",
" 2 | \n",
" 2791.395 | \n",
" 1234 | \n",
- " 252 | \n",
+ " 153 | \n",
"
\n",
" \n",
" 1157 | \n",
" 2 | \n",
" 2795.127 | \n",
" 1234 | \n",
- " 197 | \n",
+ " 151 | \n",
"
\n",
" \n",
" 1158 | \n",
" 2 | \n",
" 2798.906 | \n",
" 1234 | \n",
- " 54 | \n",
+ " 160 | \n",
"
\n",
" \n",
" 1159 | \n",
" 2 | \n",
" 2802.770 | \n",
" 1234 | \n",
- " 59 | \n",
+ " 242 | \n",
"
\n",
" \n",
- "
"
+ "
\n",
+ "
1160 rows × 4 columns
\n",
+ "
"
],
"text/plain": [
" period timestamp some_columns other_column\n",
- "0 1 0.098 1234 3\n",
- "1 1 3.497 1234 243\n",
- "2 1 6.785 1234 74\n",
- "3 1 8.431 1234 237\n",
- "4 1 10.433 1234 165\n",
+ "0 1 0.098 1234 62\n",
+ "1 1 3.497 1234 252\n",
+ "2 1 6.785 1234 194\n",
+ "3 1 8.431 1234 121\n",
+ "4 1 10.433 1234 161\n",
"... ... ... ... ...\n",
- "1155 2 2787.914 1234 79\n",
- "1156 2 2791.395 1234 252\n",
- "1157 2 2795.127 1234 197\n",
- "1158 2 2798.906 1234 54\n",
- "1159 2 2802.770 1234 59\n",
+ "1155 2 2787.914 1234 230\n",
+ "1156 2 2791.395 1234 153\n",
+ "1157 2 2795.127 1234 151\n",
+ "1158 2 2798.906 1234 160\n",
+ "1159 2 2802.770 1234 242\n",
"\n",
"[1160 rows x 4 columns]"
]
},
- "execution_count": 41,
+ "execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
@@ -906,25 +968,25 @@
},
{
"cell_type": "code",
- "execution_count": 42,
+ "execution_count": 69,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "[{'period': 1, 'timestamp': 0.098, 'some_columns': 1234, 'other_column': 33},\n",
- " {'period': 1, 'timestamp': 3.497, 'some_columns': 1234, 'other_column': 98},\n",
- " {'period': 1, 'timestamp': 6.785, 'some_columns': 1234, 'other_column': 64},\n",
- " {'period': 1, 'timestamp': 8.431, 'some_columns': 1234, 'other_column': 171},\n",
- " {'period': 1, 'timestamp': 10.433, 'some_columns': 1234, 'other_column': 56},\n",
- " {'period': 1, 'timestamp': 11.15, 'some_columns': 1234, 'other_column': 179},\n",
- " {'period': 1, 'timestamp': 24.687, 'some_columns': 1234, 'other_column': 251},\n",
- " {'period': 1, 'timestamp': 30.008, 'some_columns': 1234, 'other_column': 20},\n",
- " {'period': 1, 'timestamp': 34.738, 'some_columns': 1234, 'other_column': 218},\n",
- " {'period': 1, 'timestamp': 37.467, 'some_columns': 1234, 'other_column': 255}]"
+ "[{'period': 1, 'timestamp': 0.098, 'some_columns': 1234, 'other_column': 42},\n",
+ " {'period': 1, 'timestamp': 3.497, 'some_columns': 1234, 'other_column': 72},\n",
+ " {'period': 1, 'timestamp': 6.785, 'some_columns': 1234, 'other_column': 135},\n",
+ " {'period': 1, 'timestamp': 8.431, 'some_columns': 1234, 'other_column': 100},\n",
+ " {'period': 1, 'timestamp': 10.433, 'some_columns': 1234, 'other_column': 193},\n",
+ " {'period': 1, 'timestamp': 11.15, 'some_columns': 1234, 'other_column': 64},\n",
+ " {'period': 1, 'timestamp': 24.687, 'some_columns': 1234, 'other_column': 22},\n",
+ " {'period': 1, 'timestamp': 30.008, 'some_columns': 1234, 'other_column': 157},\n",
+ " {'period': 1, 'timestamp': 34.738, 'some_columns': 1234, 'other_column': 73},\n",
+ " {'period': 1, 'timestamp': 37.467, 'some_columns': 1234, 'other_column': 226}]"
]
},
- "execution_count": 42,
+ "execution_count": 69,
"metadata": {},
"output_type": "execute_result"
}
@@ -954,13 +1016,27 @@
},
{
"cell_type": "code",
- "execution_count": 43,
+ "execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
- "See Full Dataframe in Mito
\n",
+ "\n",
+ "\n",
+ "
\n",
" \n",
" \n",
" | \n",
@@ -1001,10 +1077,112 @@
" 1095.914 | \n",
"
\n",
" \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
+ " 5 | \n",
+ " 0.089920 | \n",
+ " Ousmane Dembélé | \n",
+ " 1842.287 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 0.071365 | \n",
+ " Ivan Rakitić | \n",
+ " 2104.861 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 0.078886 | \n",
+ " Lionel Andrés Messi Cuccittini | \n",
+ " 2248.168 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 0.171218 | \n",
+ " Gerard Piqué Bernabéu | \n",
+ " 2250.989 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 0.226095 | \n",
+ " Ousmane Dembélé | \n",
+ " 2308.083 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 0.257290 | \n",
+ " Luis Alberto Suárez Díaz | \n",
+ " 2434.592 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 0.145402 | \n",
+ " Ousmane Dembélé | \n",
+ " 2610.612 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 0.143644 | \n",
+ " Jordi Alba Ramos | \n",
+ " 2864.792 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 0.034266 | \n",
+ " Mubarak Wakaso | \n",
+ " 3072.668 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 0.018334 | \n",
+ " Luis Alberto Suárez Díaz | \n",
+ " 3239.623 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 0.014615 | \n",
+ " Philippe Coutinho Correia | \n",
+ " 3301.656 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 0.039418 | \n",
+ " Jordi Alba Ramos | \n",
+ " 3339.758 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 0.026228 | \n",
+ " Lionel Andrés Messi Cuccittini | \n",
+ " 3446.115 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 0.031532 | \n",
+ " Philippe Coutinho Correia | \n",
+ " 3641.424 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 0.137812 | \n",
+ " Lionel Andrés Messi Cuccittini | \n",
+ " 3797.222 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 0.081403 | \n",
+ " Lionel Andrés Messi Cuccittini | \n",
+ " 3948.856 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 0.009953 | \n",
+ " Ivan Rakitić | \n",
+ " 4118.643 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 0.337188 | \n",
+ " Luis Alberto Suárez Díaz | \n",
+ " 4352.760 | \n",
"
\n",
" \n",
" 23 | \n",
@@ -1037,7 +1215,8 @@
" 5508.038 | \n",
"
\n",
" \n",
- "
"
+ "
\n",
+ "
"
],
"text/plain": [
" statsbomb_xg player timestamp\n",
@@ -1071,7 +1250,7 @@
"27 0.289481 Lionel Andrés Messi Cuccittini 5508.038"
]
},
- "execution_count": 43,
+ "execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
@@ -1117,7 +1296,7 @@
},
{
"cell_type": "code",
- "execution_count": 44,
+ "execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
@@ -1129,7 +1308,7 @@
},
{
"cell_type": "code",
- "execution_count": 45,
+ "execution_count": 72,
"metadata": {},
"outputs": [],
"source": [
@@ -1138,14 +1317,14 @@
},
{
"cell_type": "code",
- "execution_count": 47,
+ "execution_count": 73,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEYCAYAAACdnstHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAay0lEQVR4nO3daWwk553f8V/1fZFs3kNyhjPkXBLHtgzJY0y8EIyNZGnhfbGLfTG2HB+JY0FYv4jtwN5X8TvHyAI59GaTNxvHwUKAkkWAWIGAtcZrJEBWHlkHpEhzn+QM76PJZt/dVZUXZFNDDSXNPCx2dTe/n1dCN6fqT6qqfvU89dTzWK7rCgAAEwG/CwAAtC5CBABgjBABABgjRAAAxggRAICx0Kd8z9AtAIAkWTt9SEsEAGCMEAEAGCNEAADGCBEAgDFCBABgjBABABgjRAAAxggRAIAxQgQAYIwQAQAYI0QAAMY+be6sB3Z56ppWc1mvNgcA2EPpVKceGT2+6+141hIhQACgdXh1zfasJVJ3ZuIJrzcJ+Ob8xbclcVyjvdSPay/wTAQAYIwQAQAYI0QAAMYIEQCAMUIEAGCMEAEAGCNEAADGCBEAgDFCBABgjBABABgjRAAAxggRAIAxQgQAYIwQAQAYI0QAAMYIEQCAMUIEAGCMEAEAGCNEAADGCBEAgDFCBABgjBABABgjRAAAxggRAIAxQgQAYIwQAQAYI0QAAMYIEQCAMUIEAGCMEAEAGCNEAADGCBEAgDFCBABgjBABABgjRAAAxggRAIAxQgQAYIwQAQAYI0QAAMYIEQCAMUIEAGCMEAEAGCNEAADGCBEAgDFCBABgjBABABgjRAAAxggRAIAxQgQAYIwQAQAYI0QAAMZCXm/w/MW3vd5kU0inOvXI6HG/ywDQIJenrmk1l/W7jKZHS+QBcTAB+wvn/IPxvCVyZuIJrzfpu3ZtXQH4dFzTPhktEQCAMUIEAGCMEAEAGCNEAADGCBEAgDFCBABgjBABABgjRAAAxggRAIAxQgQAYIwQAQAYI0QAAMYIEQCAMUIEAGCMEAEAGCNEAADGCBEAgDFCBABgjBABABgjRAAAxggRAIAxQgQAYIwQAQAYI0QAAMYIEQCAMUIEAGAs5HcBANBsprPT+q+X/osypRV9O/xN/dGxP1LA4p57J4QIANzj19d/rT/773+mql1T1ano1an/pdPDp/V33/w7RYIRv8trOkQrAGyq2lU99z+eU6FaUNWpSJJylZzemH5Dv3z3l/4W16QIEQDY9NbMW7Jd+77PC9WC/ua9v/GhouZHiADApnAwLMd1dvwuGoo2uJrWQIgAwKbHhx5XV7Trvs+T4aSef/x5HypqfoQIAGwKWAG98twrSsfSSoQSigSiiofiOnvqrM6eOut3eU3J89FZ5y++vettpFOdemT0uAfVAA/GdV1ValXlSwXliwVV7aoc58NujevTtxUIWIqEIkrGEkrFEwqHwj5WjL3y+NDjmvmXM/p3v31Rq+VV/bMz39apgVN+l6XLU9e0msv6XcZ9mnKIbzP+odBeXNdVrpjXai6rfCm/GRy1j/35pbXl+z6LhMJKxhNKxpLqTnUpGU/sZclooHg4rqcPPSNJTREgUvNeFz0PkTMTT+zq33vRkgE+jm3bWlpb0XxmUYVycdt3wUBwMxQSioajCgQs3ZyZlCSNDx+W4zgqVcobrZVSQZVaVZX1NWXW13R3cUapeFKD3f3q7exWIEBPMfbGbq+xkrfX2aZsiQBeK5SKms8samltWfZmN1U4GFJvV486EqnN4IjIsqxt/64eIgPpvm2fu667GSh5rRfyWlpbUa6YV66Y1+T8XQ2kezXQ3a9YhBE9aG+ECNqa7diamp/WfGZx67OOREqD3f3q6UwbT2VhWZbi0Zji0Zj6uno1Ojii5bWM5jILKpSKmlme1+zyvIb7hjTSf4ApM9C2CBG0rbX8um7O3Fa5WpElqb+7Twe6B5SIxT3fVzAQ1EB3n/rTvcoV85pbWdRydkXTS7PKrK/q6MgRJWM8M0H7IUTQdj7a+khE4w27iFuWpY5EaqO1k+/TjZnbKpSL+uDmJVolLcR1Xb9LaBkczQ/h9twdDq4mVywX9f9uXNR8ZlGWpIP9Q/rM+CO+tAI6kx363NEJDXb3y5U0vTSrD25dVqVaaXgteHCO4+j69G2/y2gZhMhDmFtZ0PXpW3IIkqaUK+Z14fYVlasVJaJxfWb8UR3sH/b1zj8YCGpsaFQTh08oGo6oUCrqwu0rKlXKvtWEj2fbti5PXddydsXvUloGIfIQgoGAlrMZXbtzY9uLaPDfeiGnS5NXVbNtpVOdOjXmT+vj43QmO/SZsUeVjCVUrlZ04fZlFcslv8vCPWp2TZemrilbWOdF0odAiDyERw+fUCgYVCa3pqt3b9K11STypYIuT12X7Tjq7ezWiUNHFWzC9zTCoZAmDp9QZ6JD1VpNlyavqkyLpCnYjqNLk9eUK+YVCUd06sgJv0tqGc13pjWxVDypicMnFQoGtZpb09T8tN8l7XulSkmXJ6/Jdmz1dKR1bGSsqR9cB4NBnRw9po54SpVaVZemrqlaq/pd1r7muq5uzNxWvlRQNBzRqSMnFYvE/C6rZTTv2dakErG4Thw8KkvS7Mq8FjJLfpe0b7muq+vTt1W1a+pKdurYyNh9Lws2o2AgoJOjx5SIxVWqlHVzdopWrY+ml2a1ks1s/H85dEzRMKsXPgxCxEBnskNjQ4clSbfmpujb9sns8vxG90MorOMHx1tqqpFQMKiTh44pGAgos76q5WzG75L2pWx+XXcXZyVJx0bG9+QdonbXOmddk6m/WFZvCnMn2VjFclF3FmckbcxrFQoGfa7o4UXDER0ePCRJuj03pQrdWg1lO45uzm5MazPSN6TujvvXEcGnI0R24fDgQYVD4c03lBf8Lmff2AjuSbmuq/50r9Kp1j35+9O96kp2qmbbukW3VkPdXZhRqVJWPBrTSP8Bv8tpWYTILoSCIY0NjUqS7izOqFr7+KnE4Z17u7Hqd/KtyrIsjQ8fplurwYrlkmZX5iVJR4ePNPVgjGbnyV/u3mmF99tU7j0daXUlO+U4jmaW5vwup+05jqPpzb/z2FBrdmN9VDQc0ejgQUnS3cUZWiMNcHezK3Qg3adUPOlzNY3l9fWa+PXA6MCIJGk+s0hrZI8tZVdkO7aSsURb9WEPpPsUCYVVqpSVza/7XU5bK5ZLWs5mZFmWRvqH/C6n5REiHkjGE0qnOuW4jhbumXIc3ptf2fj7Dvb0+1yJtyzL0kD3xu80xzG0p+rdWP1dvQzn9QAh4pHB7gFJ0uLaCt0ReyRXzCtfKigYCKqvs8fvcjw3kO6TJSmzvqoykzTuCcdxtLy28dzpQM9Aw/fvum7bXR+YCt4j6VSnQsGQSpWS8qXCvutnbYR6K2Qg3ddS74Q8qEg4rO7Obq1kM1rILOnQwLDfJbWd1dyabMdWIhpv6Dsh8/PzevXVV3X37l0Fg0E99thjevbZZxUOt/4cXe13JvrEsiz1dW3cHS+tMQOo12zH1tLmzKqDPX2f8tOt68Bml9bC6lLb3bE2g/q5WT9XbcfWhYULupW5tWf7zGaz+sUvfqE7dzaWkqjVanrvvff08ssv79k+G4kQ8VBPR1qSeDC6B/KlolzXVSIab+t5jToSKYWCQVVrVdYd8ZjrulrbPDd7Ort17sY5Df/7YZ35z2d06j+e0mP/6THdzNz0fL9vvvmmbNve9lmtVtPU1JQWF1v/+Rch4qFUPCnLslQoF1WzGaXlpXwxL2ljEEM7syxrawr7fKngczXtpVguyXZsRUJhzeZn9Kf/7U+1kF9QrpJTsVbUB4sf6Mu//LJsx/70jT2Eubm5+0JE2piMc3l52dN9+YEQ8VAgEFBq8wKwXsj7XE17qV9Qm2mNkL2SjG08T8sRIp5aL+QkbbT2/vqdv1bN2X6j57iO1kpr+u2t33q636GhIQV3eJ/Jtm319bV+1ywh4rFUIiVJypcIES/VQ2Q/DFiot7byRULESx8eQyndyd5Rxb6/u9BxHc3mZj3d7+nTpxUKbR/DFAqFNDY2RojgfrFwVJIYoukh27FVLJdkSUpE23+W1Xu7s3i47p36ORmLRPX0+NNKhu+/IbFdW1869CVP99vR0aHvfe97Gh/fmGk6Go3qC1/4gs6ePevpfvzCEF+PRTZfXuKhqHfqU+3Ho/G2HNr7UdFwRMFAUDW7pqpdU4SlWj1RD5FoOKKzp87qL//hL3Uzc1Ol2sbxlQwndfbUWR3rOeb5vvv6+vStb33L8+02A0LEY/U3YMtVpvX2Sv2hZCi4Pw5Xy7IUDoVkV+yN350Q8UT9xi4SDisUDOn8Pz+vF8+/qJcvvKxkOKnvn/6+vv3Yt32usvW07VlZrlZ0d2FGvV09Sqc6G7bf+gM0x+MRHvuZs9mlEwg0dtXCe7uSXNdt6KqJ9VllHddp2D7bmeu6W3/LYGDjHO2IduinX/6pfvrlnxpvt1KpaHJyUoFAQEeOHNnxAfry2orWCusaHRhpyxuh9vuNNs0szWlxbVlrhXU9fvyzDduvpY0LDX3Z3nE3T36rwdN110fzSBs3JbFItGH7rgcWx5E37v0renUz8MEHH+iVV17Z6mK1LEvPPfecRkdHt/3cjZnbclxX8UhMQ72Dnuy7mbRtB3N/ulexSEzDPY39n+bWD9cWWOu7Vfh1Qb33nZRGT9RX/11bYc34VnDvX9GL4yiTyehXv/qVqtWqyuWyyuWySqWSXnrpJVUq25+HHugZUCIab+nF0z5J27ZEUvGkPn/sVMP36zgbd80scuMdv7p26t0eUuMv5vXflePIG5ZlybKsrW6toLW7dWjefffdrXP9o65cuaLPfvbD3o/RwYMabb8GyBaOUI99OAKEh6FeqXcX7PTWb7uqvzW9H0ajNUokVB85uftBL+VyeccQcRxH5XJ519tvJRyhHvtwBAjrFHilPldWsVzcF88IqrWqqrWaAoEAw3s9VL+x8+IdruPHj3/sDLzj4+O73n4rIUQ8du9YdHgjHAopGo7Icd2td0baWa744RQvPBPxTmRr+P3uWwrj4+MaGxvbFiThcFhf/OIX1dPTfmvdfJK2fSbil9zmRIHxffBmdSMlYwmVqxXlS4WGrgPhh/00T1gj1Wc7yBcLUvfutmVZlr72ta/p8uXLev/99xUMBvX444/vu1aIRIh4ynVd5Yobw0I7N+fQgjeS8YRW1leVK+bVn+71u5w9RYjsjY7NczJ7z9Dt3QgEApqYmNDExIQn22tVdGd5qFAuynYcRcMRnol4rD6z7X6YHr0+7X2qzae9b7RkPKGAZalUKala2x8zSvzud7/TM888o4MHD+rZZ5/V+fPnPd8HIeKhzPqqJKkz0eFvIW3o3kkJ2/kCUCgVValVFQwE2nrxLT8ErMBWaySTW/O5mr33m9/8Rk8//bTOnTun6elpvfbaa3rqqaf09htvebofQsQjrutuLb3Z27W/Hqw1QjgUUjrVJdd1tbDa+gv5fJz5zMZKd71dPTxU3wO9nZtLWK+2/xLWP/zhD1UobG+5FwoF/Yd/82893Q8h4pFcsaBSpaxwKKSuJC2RvTBYX388s9iWQ31t29bS2kZA1n9XeKunMy3LspQtrLf1cg2u6+rixYs7fnfrurdLABMiHllY3byD7OQOcq+kU52KhiMqVytazWX9LsdzS2srsh1HHfEUD9X3SCgYUndHWpK0kFnyt5g9ZFmWent3HoDSlfZ2+hVCxAPlakVLm10sB3oGfK6mfVmWtXWHPp9Z8Lkab7muu9WVNdhDK2QvHdg8huZWFlRr41kQfvzjHyuR2H4zkkgk9E++6+1094SIB6YXZ+VqoxXSyJle96P+dJ8sy9JqLqtCqeh3OZ5Zy2dVKBcVDobUs3mnjL3RmexQRyIl27E1tzLvdzl75ic/+Yl+8IMfKJFIKJVKKZFI6Ec/+pG+8U+/6el+PAmRMxNP7Pjf+0G+WNDC6kaz+GD/kM/VtL9wKKSB9Ma61PUptludbdu6OTslSTrQO8h8WQ1wqH9YkjSzPN+2z0YCgYB+/vOfa2lpSe+++66Wlpb0s5/9TP/o1Be2fsaL6zVH6y44rqsbs7clbXRjxaMMyWyEQwMjioQjypcKml2a87ucXZtcuKtKtaJkLNGW6000o85kh3o60nIcRzdnJttyoEZdPB7X0aNHFY/vzUwPhMguzC7NqVAqKhqO6NDAsN/l7BuhYFBHhw5Lku4uzrZ0t9ZaLquFzJIsWTo6fEQBBmU0zJGhUQUDQa3ls1vD8/HwCBFD2fy67i7OSJLGhw5vW3sCe68r1amB7j65clu2W8u2bd2YnZS00RXa7nOCNZtIKKwjBw5Jkm7PTbX0zYifCBEDpUpZV+/ekCtpqGdQXQ1cwx0fOjxwcKtba2r+bkt1SbjuRvjVu7GG+w74XdK+1NfVo97ObtmOoyt3rqtaq/ldUsshRB5StVbTlTvXVbNtpVOdGh0c8bukfSsYDOrY8BFZlqW5lQVNL836XdIDcV1XN2cntbK+qmAgoKMjR3i3yCeWZWl8+MjWLNFX796Q/TErFmJnhMhDqNSqujh5RcVySfFoTMdGxjn5fdaZ7NDxkTFJG89Hmj1IXNfV7bk7WlxdVsCydHL0+NYU5fBHMBDQyUNHFQ6FtV7I6fLUtX21iuZuESIP4eLtzQCJxPTo6HGFgjwHaQY9nd0aH9540H5nYaZpu7bqXVjzmUVZlqXjB4+yZECTiIQjmjh8YitILk5e9buklsF6Ig+hVCkrEYvr0dHjCrNsaVMZSPcpYAV0ffrW1tj/saFRhYLNcYhXqhXdmJnUWj6rgLVx58uztOYSj8Z06shJXZq82tRLDszMzOj8+fNaW1vTsWPHdPr0acVi/r1e0BxnWIvoTHToxKHxprkwYbu+rh4FAwFdu3tTy9mMsoV1jQ8d3poryQ+u62pxbVmTc3dlO7ZCwaBOHjq2NSU5mkssEtWpIyd1+c71phytNTM1rd/+z1+rVqvJdV3NzMzorbfe0gsvvHDfFCeNQnfWQ3j08HECpMl1d6T12fEJdcSTm4Mgbuj69C3V7MaPuqlUK7py57puzkzKdmylU1363PgEAdLkIuGITh15xO8y7uM4ji69876q1epWd22tVlM+n9frr7/uW12EyEPgIXpriEdjmjhyUocHDypgWVpaW9F7Ny5oPrMo29n7B6Y1u6bZ5Xm9d+OiVnNZBQNBHR0+opOHjrLiZYsINuHUM7lsbsdnfbZt6+pV/57hcFuNtmRZloZ6B5VOdenmzG2tF/O6NTulqflp9ad7Ndjd7/k0NfliQXOZBS2vrWy9/JhOdWl8aJTwwK6FI2Fl1xK6cOGkbDukEyeuqrd34037vZrS5EEQImhr9VbJcnZFcyuLyhXzmltZ0NzKgjqTHRpI9yoVTykajjx0S9N1XZUqJa0X8lpYXVJuc210SepKdmiwZ0DdqS5asPDE//3fw3rxxX8h13XkugH9/d//Y/3BH/yDnnnmdZ05c8a3uggRtD3LstTX1au+rl7liwXNZxa1tLaibH5d2fy6JCkYCCoZSygZTygVSygaiW67+OdLBTmOo1KlrHypoHyxsPGZ++GLacFAcM9aOdjflpelf/2vjqha3d7N9vrrX9Jzz6X06KOP+lTZHoTI+Ytve71JwDPJeELj8cMaHRzR4uqK1vJZ5Ut5VWs1ZQvryhbWd/x379+8tOPnkVBYyXhS3aku9W6ODgO89uqrUiB4//OQWi2s//O7g3rsSf+uu03ZEkkzfh57LBQMaah3QEO9A3JdV9VaVbl7WhjVWlWO66hYLkmSEtG4LMtSJBxRarPFkowleF8IDeE40o6dopbkOP52l3oeIvttUSq0vno49IQj960qWG9Zf+7ohA+VARv++I+lP//z+2fIiMcs/fD7gzoz8XDr0HjZY0TbGwCaXH+/9Fd/JcViUiQiBYNSPC698ILk4zN1SU3anQUA2O6735X+8A+lv/1bqViU/uRPpM9/3u+qCBEAaBljY9Jf/IXfVWxHdxYAwBghAgAwRogAAIwRIgAAY4QIAMAYIQIAMEaIAACMESIAAGOECADAGCECADBGiAAAjBEiAABjhAgAwBghAgAwRogAAIwRIgDQZiqViiYnJ7W4uLjn+2JRKgBoI2+++abOnTunQCAgx3HU09Ojb3zjG+rs7NyT/dESAYA2MTk5qXPnzqlarapcLqtarWphYUEvvfTSnu2TEAGANvHGG2+oWq1u+8x1XWUyGS0sLOzJPgkRAGgTuVxux88DgYAKhcKe7JMQAYA2ceLECYVC9z/qtm1bQ0NDe7JPQgQA2sTp06eVSqW2BUk4HNZTTz2laDQqSSoUCspm1lT7SLeXKUZnAUCbiEajeuGFF/Tmm2/qypUrSiaTOnPmjMbGxmTbtl555RVduHBBlmXJcRyVFnN66qmnZFmW8T4JEQBoI7FYTE8++aSefPLJbZ+/9tprunjxomzb3vrs97//vbq6unT69Gnj/dGdBQBtznEcvfPOO6rVats+r1arev3113e1bUIEANpctVqV4zg7frfbUVuECAC0uUgk8rFvrB88eHBX2yZEAKDNWZalr371qwqHw/d+qEgkoq985Su72jYhAgD7wPHjx/Wd73xHJ0+eVLIjqeHRYT3//PM6cODArrbL6CwA2CdGRkb09a9/Xecvvi1J6uvr2/U2PQ+RenEA0A64pn0yurMeUDq1N9MoA2hOnPMPxvOWyJmJJ7zeJAA03COjx/0uYc942bqiJQIAMEaIAACMESIAAGOECADAGCECADBGiAAAjBEiAABjhAgAwBghAgAwRogAAIwRIgAAY4QIAMAYIQIAMEaIAACMESIAAGOECADAGCECADBGiAAAjBEiAABjhAgAwBghAgAwRogAAIwRIgAAY4QIAMAYIQIAMEaIAACMESIAAGOECADAGCECADBGiAAAjBEiAABjhAgAwBghAgAwRogAAIwRIgAAY4QIAMAYIQIAMEaIAACMESIAAGOECADAGCECADBGiAAAjBEiAABjhAgAwBghAgAwRogAAIwRIgAAY4QIAMAYIQIAMEaIAACMESIAAGOECADAWMjrDZ6/+LbXmwR8x3EN7Myzlkg61enVpgAAe8yra7bluu4nff+JXwIA9g1rpw95JgIAMEaIAACMESIAAGOECADAGCECADBGiAAAjBEiAABjhAgAwBghAgAwRogAAIx92gSMO77mDgCAREsEALALhAgAwBghAgAwRogAAIwRIgAAY4QIAMDY/wdPo5T9AGfcawAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAG3CAYAAAA5CBh1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtr0lEQVR4nO3deWyk+V3n8c/z1F2usl0+yrf7mOme6UzPTGYGJoEQJSHZKAgirXaCGAJajuwIlmy0aKVogbAcAol/WK1WCBZYtCCGQYw2mygEoUxWESQkAZKZyWwzR9+Hy3a7y0e5fJTrfJ79o+zH5enDnW7X87h+9X5J0VSVq/N8bZef5/P8Tst1XVcAAADoeHbQBQAAAOBgEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwRNjvAy6vFZTLz8txGn4fGkCXqtZr3uNoOBJgJQC6iW2HNJUd12Bvxrdj+h7scvl5latlvw8LAJL2hjwAaK+acvl5s4Nda0sdd84A/ECLHQC/7Zx3/O6h9D3Y7YiGI3ry5GNBHR5AF3n1/BlV6zXOOwB8s3Pe8RuTJwAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADBH2+4C1el2SVK3X9Or5M34f3mi2HdJUdlyDvZmgSwEAdIjltYJy+Xk5TiPoUoxSrdck7eYev/ge7Fy53uOdbxoHpaZcfp5gBwC4a7n8vMrVctBlGKs19/jB92BnyfK+yWg44vfhjbUTkrnjAgB8N1qvG1yXD87OddmS5etxfQ92kXBY1XpN0XBET558zO/DG+vV82doAQUA3DOuywdr57ocCfsbtZg8AQAAYAiCHQAAgCEIdgAAAIYg2AEAABiCYAcAAGAIgh0AAIAhCHYAAACGINgBAAAYgmAHAABgCIIdAACAIQh2AAAAhiDYAQAAGIJgBwAAYAiCHQAAgCEIdgAAAIYg2AEAABiCYAcAAGAIgh0AAIAhCHYAAACGINgBAAAYgmAHAABgCIIdAACAIQh2AAAAhiDYAQAAGIJgBwAAYAiCHQAAgCEIdgAAAIYg2AEAABiCYAcAAGAIgh0AAIAhCHYAAACGINgBAAAYgmAHAABgCIIdAACAIQh2AAAAhiDYAQAAGIJgBwAAYAiCHQAAgCEIdgAAAIYg2AEAABiCYAcAAGAIgh0AAIAhCHYAAHSxUq2kxa1FVRvVoEvBAQgHXQAAAPDfawuv6Te/+pv667N/LUeOYqGYfuadP6Nfe9+vaSw9FnR5uEe02AEA0GW+du1revefvFtfPPdFOXIkSZVGRX/y6p/oe/7n92h2bTbgCnGvCHYAAHSRhtPQT3zuJ1Rzamq4jT1fq7t15Tfz+sUv/WIwxeG+EewAAOgiX770Zc2uzcpxnVt+ve7U9fmzn9fCxoLPleEgEOwAAOgiby6+qZAVuuN7HNfRheULPlWEg0SwAwCgi/REe27bWvf296HzEOwAAOgiHz35UVmWdcf3TPVO6Z2j7/SnIBwogh0AAF1kondCn3jiE7Kt20eAX3/fr9/x6zi8+K0BANBlfu+Hfk/Pnn5WkhSyQgpZYdmyFbJC+p0P/o4+8eQnAq4Q94oFigEA6DKxcEwv/JsX9Ms/8Mv6b1/971opr2gyPalf/uB/1nh6POjycB8IdgA6nuu62qqWValWVavXVK1XVa3XVKvX5bqOao26JKnWqOtc7pIi4bCi4Yii4agi4Yhi0agS0fi+444A05zOntYnH/+UqvWaouEIoc4Avge7Wr15gq3Wa3r1/BnfjmvbIU1lxzXYm/HtmADao1Kram1zXZvlTW1slVQqb93VLD/XdVVYX73l12zLVjKeUCqRVE+8R709acUi0QOuHEAQltcKyuXn5TiN/d98QKr1mqTd3OMX34OdK9d7vPNN+6OmXH6eYAd0INd1tVkuqbBeVGFjVaXy1oEfw3EdbWxtamNrU9KiJCkZTyiT6lcm3aeeeJIWPaBD5fLzKlfLgRy7Nff4wfdgZ8nyvsloOOLLMXcCpJ9JHcD9q9ZryheWlF9dUrVWve37YpGoeuJJJWIJRSMRRcMRRbb/F7Jt/b+Lb6jWqCsSCuv08VOq1WvbXbY1VWs1bVW2tFkuqfK2Y5TKWyqVtzS3dF3RSFTZ/iFlM0O+nbsAHIzW67/f2cOSvzeEvge7SDjs9eU/efIxX4756vkzPrcOArhXrutqvbShG4VFrawVbnmv2xNPKpPuUyqRUk88qUj4zqeynZY2y7IUi0Rv28Vaq9e1WS5pY2tDhfWiNssl72vVWlWzi/OaW5zXQG9GI5lhpZMpWvGADhJE9tjv/HTQmDwB4NBYK20od2NW61ubN32tr6dXA739yqT6FG3T2LdIOKz+VK/6U72aHB5XtVZVYaOolbVVFTfXJEmumuN1ltcKSidSmh6ZUDqZaks9APDdItgBCFypvKWZ/JxWN4p7Xg+HwspmhjTSP6RYNOZ7XdFIVCOZYY1khlWuVrxu4fr2LNv1rQ29cfWcMqk+TWUnlIwnfK8RAFoR7AAEptFo6Fp+VvnC0p7X49G4JodHNZDOyLYPxzrq8WhM0yMTmhwe08p6QbOLC95g7MJGUYWNokYyw5rOTigUuvMG6wDQLgQ7AIEobqzp0vVreyZFRMMRTQ6Pa7h/8NCOXbNtW0N9gxrsHdDi6rJmF+e9Mbw3CosqbBT1wPgR9fX0BlwpgG5EsAPgq4bT0LUbe1vpbMvW5PCYRgeyh6aFbj+WZSmbGdJQ34AWVvKaXbwux3VUrVX11rULymaGdGRkUiGb1jsA/iHYGcZx9l+kFQhKuVrRudxFbVV215NKJ1N6YPyo4gGMoTsItm1rfGhUA70ZXZq/qvXShiQpX1jSemlDD0092LHfG8xXWC+qwVJgRumMW2PsayfQ1Z2Gcvl5ua6/CyIC+ylurun1K295oc62bB0dndI7jpw0IvjEozG948hJHR2dkm01T61blbJev/KWipvrAVcH7OW6rnL5eZ3LXVSDBgGjEOwM0bqd0tzSdV2ev0a4w6GxsJLXW9cuqN5otgzEozE9evyURgeyh3Ys3b2wLEujA1k9evyUF1brjYbeunZeCyv5gKsDmlzX1aX5a5pbuh50KWgDgp0h3j6OZ7G4rAtzV+5q/0ygXZqtAnO6upDzXutP9er0sVNKxOIBVtZeiVhcp4+dUn9qdwLF1YWccvk5brgQKMd1dGH2spaKy95roQ4Z14q7w2/TEDutHmE75G1fsrJW0PncZcbdIRCu62omP6e5pQXvtbHBET009aDCXbAcSDgU0kNTD2pscMR7bW5pQTOEOwTEcRydz13SyvqqpOZWVycnjzPBxzAEO8PYtq2Hph/wgt7qRlFnZy4yOBa+2hm/c335hvfa0dEpHRmZNKrrdT+WZenIyKSOjk55r11fvsE4WPiu4TR0duaiVjeaO6hYlqWHph/QQG8m4Mpw0Ah2BupP9enU9Alv2Yi10rouzV3lQgLfzC/f0PzybkvdsbFpjQ5kA6woWKMDWR0bm/aezy8v7Am9QDu5rquLc1e1VmpO4rFtW6emT6g/1RdwZWgHgp2henvSOjV90hs7sbK+qtnF+YCrQjdYWV9VLj/nPT86OqWRzHCAFR0OI5nhPS13M/k5Fba7xIB2yi3Oe5+1kG3rHUdOqrcnHWxRaBuCncHSyR49OHHcez63tKCl4kqAFcF0pfKWLs5d8Z5PDo93dUvd240OZDU5PO49vzh3RaXKVoAVwXRLxWXNt4xzPTF5XKlET4AVod0IdobLpPt0ZGTSe95cQHUzwIpgqlq9rnO5i95kncHejCaGRgOu6vCZ2F7MWJIajqNzM5dUb9QDrgomWi9t6tL8Ne/5kZFJul+7AMGuC4wOZJXtH5LUHGtxYfaSt54YcBBc19Xl+auqbO/7mowndHz8aFdNlLhblmXpgfEjSsYTkqRKrcIYWBy4eqOuC7OXvM9Vtn+I1vMuQbDrApZl6ejYlNLJlCSpWq9p5sZswFXBJEvFFRU2ipKkcCish6YeZG2sOwjZoe1lX5q7OhY2ilpeY5gEDs7MjTlV6zVJzW37jo5NcaPVJTjzdgnbsvXgxDFvpmx+dUnFzbWAq4IJqrXangWIj49NKxaJBlhRZ4hFojreMlP2yvWcqrVagBXBFMWNNeVXlyQ1Z8A+OHHM2+YO5uM33UVikaimsxPe88vz11jfDvfFdV1dub77ORrszbAu1ndhoDejQW+8XUNXrrMVIO5Pw2no8vXdcXXT2UlutLoMwa7LjGSGvS7ZSq2qXJ4lUHDvChtFrws2Egrr6Oj0Pv8Cb3d0dFqRli7ZnZ8ncC9y+XlvrGs6mdJIZijgiuA3gl2XsSxLx8eOeGMtFlby2qqUA64KnWhnH9gdR8emFQmHA6yoM0XCYR1t6ZJlP1ncq61KWQsreUk3n+vRPQh2XSgRi2tiaMx7zsLFuBeLxWXvpiCV6NFAuj/YgjrYQLrfW1tsq1LWYssG7cDdaj2XTwyNKRGLB1gNguJbsLs8f02vXzmrWr25XlOtXtfllvV14K+xwaw3I295raDNcingitBJHMfRbEs3/nR2gpaB+2BZ1p7xr7OL1731AIG7sVkuaXmtIKk5LGJskKVNghJ03vEt2JUqW9rY2pSrZheDK5cV1wMUskN7Fo9tXZkc2E9+dclbSqE/1cf2RAegtyet/lSvJKlaq3qzGoG70XoOHx8aVcgOBVhNdws679AV28WymeE9rXblKmPtsD/XdbWwsug9n8qO3+Hd+G5MtbTa3VhZZKwd7kq5WvZa68KhsLLszdzVCHZdLGTbGmtZifxGgRYC7G+ttOHdBKSTKfXEkwFXZI6eeNKbtb5VLWuttBFwRegEN1Z2z91jA1kWB+9y/Pa7XDYzrJ2RUUvFFVoIsK8b27PuJGmUloEDN9LyM71RWLzDO4FmC/rS9q4llixa60Cw63aRcNjbFLpWr2ltcz3ginCYVWs1rayvSmp+djK9/YHWY6KB3v7dde3WCuxGgTsqbq6rtjPeNd3LkkMQnwBoqH/QWxR1sbisvu0B3MDbrawXvMfZ/iG2KWoD27I1nBnS/NKCXEkr66saHaAVBre21LI0zlDfYICV3Jvl5WW98sorWlhYUDgc1sMPP6zTp08rGmW3jHtFsIMyqT6F7JAaTkMr66tqOA1mVOGWCuu7uyKwdVj7DPZmvFmOBYIdbqPhNLSytiqpudJBZrv3pVP80z/9k1566SVZluUNA7pw4YL+/u//Xj/1Uz+lwcHOC6qHAbfbkG3b3n6VjuNodWMt4IpwGNUbDa+rPhqJKhlLBFyRuZKxhKLhiCRprbSuRoM9nXGz1Y01OW5zvcPB3ozsDpo0ceHCBb300kuSdNPY7o2NDT3//PN87u9R53wK0FaZll0D1pmJh1sobq556zJlUn0sSNxGlmV5f5Ou62p1k5st3Kz1XN16Dl8tr+p3v/m7eux/PKaJ/zqh9/6v9+ovzvyFao3DM17zG9/4xm3PIa7rqlgs6uzZsz5XZQa6YiFJSid7vMcEO9zKasvm9Bm2D2u7TLrPmxW7ulH0WtWBHWul3cluO+fwa6vX9N4/fa/m1ue81ryFzQV9Pfd1/dlrf6a/+fjfKB4OdquxRqOha9fuvBODbdu6ePGiHnnkEZ+qMgctdpDUXNRyp2tts1yiCRw32dza3XZuZ601tE86ububR+vPHpCaQyNK5eZuBslYQuFQWK7r6mP/+2O6vn7dC3WSvMd/d/Xv9JmvfCaQelvdzXZ5ruuyrd49ItjB03qxXt/aDLASHDaO43hb4iRjCRZA9UHItr1N3EuVLS5y2GOj5Ry9c+7+9vy39fL8y6q79Vv+G8d19Eev/JE2q8Ge38Ph8L4TI1zX1fg4u9rcC87O8OwJdnTHosVmebfFqCfBThN+ScV3h0hsltlbG7taz9E75+6vz3x93yWINmub+pf8v7S1tv1YlqV3v/vdd3xPJBLR448/7lNFZiHYwdO6NdQW+8aixZ5gxxZivmkN0ZtlWtGxa6tlU/nU9ufE0t1NaLrb97XTk08+6Y2fa51EYdu2bNvWj/7ojyoeD3YsYKdi8gQ8scjugpDVWjXASnDYbFV2g36SYOeb1p91mZsttKjWd2e4RsPNc/cHjn1gz9i6W+mL9emxkcfaWtvdsG1bzzzzjE6cOKFvfetbyufzCoVCOnXqlL7v+75P2Wx2//8T3BLBDh7bthUJh1Wr11Uh2KFFreUiEtteXw3tF235WbO1GFrtnKMj4Yi3ft07R9+p906/V/84+4+qOzePs7Nk6ZPf+0klIodjDUrLsvT444/T5XrA6IrFHjt3frV6bd87P3SP1taBCMHON3uCXZ1ghybHdbybrdaeFkl68WMv6njmuKTdLteQ1dxJ6KMPfVS/8f7f8K9QBIIWO+wRi0S98VTVWk3xaCzginAY7FxEwqFQR61u3+ls21Y4FFK90djTaoru1tp6G33bjdZYekzf+bnv6IUzL+j5M89rcXNRDw48qOeeek4/cvJH2N+5CxDssEe05e6vVifYobnswE5r0U6LLvwTCUdUbzRUrdfkui47fmBPyI9Gbv6bTEaSeu6p5/TcU8/5WRYOCaL7AXNdV0vFFc0uznfkOLXWuzm6YiFJrnb3cuzE9escx1HDaS64/fY9KTtB2G52o3Vi7WiP1jUNO7EFvVKranZxXkvFFT7XbUCL3QFbLC7r8nxzq5R8YUlPnHi0o+6wW2vlDw6SpJbPQSd9lndcun5Nje0LYd3pwB1V3vY32Ym/Axwsp/VvMsClS2q1ms6ePatCoaB4PK5Tp04pnU7f8d+4rqs3rpz1egEc11G2f8iPcrsGwe6AlVoWEa3Wa2o4jsKhUIAVfXdarxnkOkiSq9YPQueFilLLGnydeLPSeuHe+7sA9p6z/fTGG2/oi1/8oiqVimzbluu6+tKXvqSnn35aH/7wh2/bkthwnD0TgUosvH3gOq8N95Ab7h9UaLvrZLh/sKNCnbT3wkfLAKTODxbjg6Pe452/zU7S+jPnbxJS8DfgFy9e1Gc/+1lVKhVJza5h13Xluq7++Z//WV/+8pdv+29Dtq3h/sHtxyHvMQ4OLXYHrCee1JMnH1W90bhptlInINjh7Tq9e364f1AzN2ZVa9Q7coyge0i63XB4WC1joYP4m/zKV75yx69/61vf0nve855bdstalqXjY0c0OTyucCjUkTdbh13nneU6QMgOKRaJdmQwqjd2xyB14kUQB8+yLO/kW6vfenPxw64T/xZ37MyADNmhjv4+cHBaz823Woi4nVZWVrSwsLDv+958883bfs2yLMUiUUJdm3Dlxh6tM3nfvvAlutdO63Nte8kN+MN1XS/YRSOd1wOA9ghy+8dyef+t7SzLuqv3oT0IdtijWm+eJCzLUjhETz2aItuhwnEdb4Yp2q/hNLwZkJ04tAPtEQ6FvdZbv5fV6uvr27fl2HEcZTIZnyrC2xHs4HFd1ztJdGpXMtqjNVSwA4J/amzlhlvY6cqU/G+x6+np0cmTJ+94fYjFYjp16pSPVaEVwQ6ehtPwFr681Wrm6F6tO06Uq3Sx+KVcrXiP2fUDrXY+Dw3H2TM22g8f/vCHFYvFbgp3O89/+Id/2Gvlh/8IdvC0XkQYX4dWyXjCe7zZsi4c2qv1Z936OwBaz9F+32wNDAzoueee08mTJ/e8ns1m9eM//uN69NFHfa0HezGICp710ob3uCeeDLASHDatn4fNLYKdX1p/1qkEf5PY1ZNIarG4LKl57k4lenw9/sDAgJ599lltbGyoWCwqHo9rYGCAITyHAMEOntZgl06mAqwEh008GlPIttVwHG3QYuebnZ91cwmlWMDV4DBpPUevlzY0NjgSSB2pVEqpFNeLw4SuWEhqTpzYCXYhO6RkjG4f7LIsSz3xZotArV7zfcB2N6rWqt7kiZ54kpYQ7JGMJbz17NZLGyxDBA/BDpKa4+tqjeZCl+lkDxcR3CSd3O3qWd1YC7CS7tD6M2792QNS82YrlWi2lNUadVVqlX3+BdphdXVVFy9e1OrqatCleAh2kCStlda9x+kEzeq4WX+q33tcWF8NrI5u0fozzqT7A6sDh1dvS3dscXP9Du/EQXvzzTf1zDPPaHBwUCdOnNDg4KCeeeYZvfHGG0GXRrBD03Kx4D3uS/UGWAkOq1Qiqcj2otXFzTVvaRwcvIbjqLjZbLGLhMNMZsIttZ6rW8/haK/XXntNTz/9tL7whS9450HHcfSFL3xB73rXu/Tm68GGO4IdVKlVvRa7eDTGRQS3ZFmW13LkuK4XPHDw1jbXvB0nMql+hkbglnriScWjzUk1a6V133eh6FY/+7M/q3K5rMbb1g9sNBoql8v69V/6LwFV1kSwg5aKK97joT6mq+P2Muk+7/Fiy+cGB2txddl73PozB1pZlqWhvgHv+TJ/k2332muv6Tvf+c5NoW5Ho9HQ2Tff0rk3z/pc2S6CXZdzXVdLxd2LyFDfYIDV4LDrS/V63bGFtQKzY9ugWqtqZXt8XSQcZmgE7qj1nL1YXGZ2bJudO3furt537crV9hZyBwS7LrdZLmmr0ly1PJXo8Zr1gVuxLVvZzJAkyZWUX10KtiADtf5Ms/3Dsi1O07i9eDTmLU68VSmzM0ybpdPpu3pfsie4meycMbrc9eUb3uPhflrrsL9sZth7fKOw5I0Fw/1zXFc3Ci3BbjtEA3fSeu5uPafj4H3gAx9Qb++dW9F7Uj36nnd9r08V3Yxg18XK1bKW15ozqSKhsIbphsVdiEWi3iSKWr3GuJ4DtFRc9hYlzqT72bMZd2Wob1Dh7SESy2sF3/eO7SaJREKf+cxn7vief/fvf07xRNynim7mW7BLxhJKJXpkqTkw35LF7gYBm1287j0eHczKtsn5uDtjA1nvcW5xnqVPDoDjOJrNz3vPW3/GwJ2EbHvP52V2cSHAasz36U9/Wp/5zGdk27Zs21YkEvEe/8qv/Io+9R8/FWje8W2v2OPjRyRJr54/o2q9pkg47L0G/5XKW95s2HAopJEMFxHcvd6etPpTvVrdWFO1VtWNwmJge1Wa4kZhUdXt1rr+VK96e+5uLA8gSSMDWc0v31DDaWipuKzxoREaT9rEsiz99m//tn7hF35BL7zwgq5fv66xsTF9/OMf18TEhPe+oPKOb8EOh4fruprJz3rPxwdHFQ6FAqwInWgqO+FtezW3dF3D/UN8ju5RvdHQ3NJuC/pUduIO7wZuFg6FNDE0qpn8nCRp5sacHpp6gOWr2mh8fFyf/vSngy7jJvS9daHltYJ3QY6EIxqhywf3oCee1GBvcw2teqOh2cX5ff4Fbmd2cV717XWxhvoGWCQc92RkIKtIOCJJWt0oemOo0V0Idl2mVq/p6sKM9/zY6JRCjK3DPZrKjnstAgsrea2xX+V3bW1zXQsreUnNLp7J4fGAK0KnCtm2jo1Oec+vLuS8yTjoHlzRu8yVhZzXMjDQm9FAbybgitDJ4tGYplu6DS/NX1PDufWK7LhZw2no0vxV7/l0doK1JHFfWs/r9UZdVxdyAVcEvxHsusjK2qpWtpvmw6HQnjs74F6NDmSV3l4gtVKrKJenS/Zu5fJz3v6e6USPRhkWgQNwdHTKG++6vFbQytpqsAXBVwS7LrFVKe9pGTg6OuWNxQDuh2VZOj5+dE+XLGvb7W+puKKFlUVJN/8MgfsRDUd0ZGT3xv3S/FVvhyGYj2DXBeqNus7lLnpdZJl0vzfoHTgIiVhcR0YmveeX5q9qc4utjW5nc6ukyy03WkdGJpWIBbegKcwz1DfgLSTecBo6l7uoeqMebFHwBcHOcI7r6vzsZZWrFUnNhaIfpGUAbTCSGfY2JHdcV+dyF7112bCrWq/pXO6itxXbcN+gRlq2aQMOgmVZenD8qLeWXbla0fnZy2wB2AUIdgZzXVfXFnLeTMVwKKyHph5QiLXG0AaWZen42LS3IXm1XtP53CUmU7RoOA2dz13yAm8q0aNjY9PcaKEtQqGQTk494G03tra5rmsLObmEO6MR7AzVXIR4TjcKu2N4Hpp6QDFm3KGNbNvWyckHFN0ev7mxtalzM5fYckxSw3F0buaiNrY2JTXHQZ2ceoCt/NBW8WhMJ6ce8La3ulFY1Ex+jnBnMM4oBnJdV1cXcrq+fMN77fjYEaWTqQCrQreIRiJ6aOpBhexmy/BaaV1nW8Z4dqOdMU5rpQ1JUsgO6aGpB70ADLRTbzK1Z0ur68s3dJWWO2MR7Azjuq4uzV/1Wuok6djYtIb7BwOsCt2mJ5HUw9MnvMWv1zbXdXamOwdv1xt1nZ256A2JCNm2Hp4+oZ4Eu0vAP8P9gzo2Nu09v1FY1KX5a4Q7AxHsDFN3GlpqWWriwYmjDMxGINLJnu1w12y5Wy9t6PUrZ7tq2YWtypZev3JW6y0tdQ9Pn1A62RNwZehGI5lhPTB+1Hu+VFzWhdnLhDvDEOwMsfOHufNfy7J0cvK4N0sRCEI6mdKpIye8wdvlakWvX3lLhfViwJW1X2G9qNevnPVmpIdDYZ06coIhEQjUcP+gTk4e98bcrayvdmVLerFY1Llz53Tx4kVVKpWgyzlQ4aALwMGot4xfsi1bJ6eOqz/VF2BFQFMq0aPTxx7W+dwllSpbzUkEuYuaGh7X+NCocTNCXdfV/NKCcou7O3AkYwmdnHqA7cJwKAz0ZvTQtK3zuctyXEfd1F5X3irrr/7qr3Tu3DnvtXA4rKefflo/+IM/aMSqEbTYGSJs734YTx97mFCHQyUejemRYw9pYHvBVEnKLc5vd81uBVfYAdvpem0NdQPpfj1y7CFCHQ6V/lSfTh97uKs+l7VqVd/4v1/VhQsX9rxer9f1zW9+U5///OeN6JYm2Blip9UjEgorGU8EXA1ws5Ad0onJ45ocHvNe2yyXdObyW5pbWujoE6rruppbWtCZy29ps7y748bk8JhOTB73xhkCh0kyntDpY6e8oRKmu3bxqkql0m2XX3rjjTeUy+V8rurgdcdvs4uY1q0Fs1iWpcnhcfX19OrS/FWVqxW5rqtcfk5LxWVNZyfUn+rrmM+x67pa3ShqJj+3Z1JIPBrTA+NHGU+HQy8cCsnukL+3+zV7eUZ36ne2bVuvvfaapqenb/+mDkCwA+C7dDKlx46/Q7n8vK6vNNdb3KqUdS53SelEStMjE4c+FK2XNjRzY1br2wsO7xgbHNHU8DgLDwOHTLV850kSjuOoWOz8iV0EOwCBsG1bR0YnNdDbr6sLOa8Lc31rQ29cPae+nrRGMlll0oenBc91XRXWi7pRyKu4vS7djp54UkdHpw59IAW6VSQWvWO4syxL6XTax4rag2AHIFDpZEqnjz2swvqqZvJz3vIgxc11FTfXFQ1HlM0MK9s/qGgkGkiN1VpV+dVl5QuL3j6vO+LRuKaz48qk+w9NAAVws6HRo/ri/+nRzMyULMvVsWNX9Y53vKFIpLmqhOu6euyxxwKu8v4R7AAEzrIsDfRmlEn3a3F1WXNLC6rUmgGvWq9pdnFes4vzSiV6lEn1KZPuVyIWb1uQcl1XW5WyCuurKmwUvf1dW8UiMU0MjWq4f5BABxxyr72S1H/61Me0sR6SZTmyLOm1157Ql7/8r/STP/kXGh/P6/jx4zp27FjQpd43gh2AQ8OyLGUzQxruH1Rxc003VhZV2Ngd87KxtamNrU3lFucVi0SVSvQolehRTzypZDyp8D2uQVVvNFQql7RRLmlz+xiVWvWW782k+jQyMKy+nl4CHdABZmak//CJY6pUbEmWXDeknUn4pVJSf/7n/1Z//Mdf04/92AeN+Jsm2AE4dCzLUn+qT/2pPlWqFeVXl1VYX1WpZc27Sq2qSq2q5bWC91o0ElU0HFEkHPH+G7JtNbYX8G44Dc0uXletXlO1XvP+W71NiNuRjCWUSfcr2z+oWBet+wWY4Pd/X6pUbTnOzaHNdW1VKgnNz39EkUgAxbWB78GuVm9uXVKt1/Tq+TO+HPPtY2IAdI5YNKap7LimsuMqVysqrBdV2FjVemnjprXvqrXqHUNaw3E027J48O1YlqXeZEqZdL/6U31dtYgrYJrPflZyGrdviXMc6c9fKOlD//rigR53J3vs5B6/+B7s3JZFZPwOXDaLhAIdLR6NaWwwq7HBrBzX0Va5rM1ySRvlTW1ulVSpVb/rfS/DobBikah6Ekml4j3qSSSViCW6Zm0vwHRb+25uY2mrZLUtk7g+b9rme7CzZHnfZDTsX7unbYc0lR337XgA2su2bPUkkupJJJXVkPe64zqq1eteN6vruro8f00Np6GwHdLxiaNeN20kHJZtsd4cYLInnpDyeVeN27TahUKuTj2ydeCZZCcoWvL3JtH3YBcJh1Wt1xQNR/Tkyc6fVgzgcLEtW7FIVLGWpVGuLeTUcBqybXvPfrUAzPfJT0p/+7e3D1eNhqVf/aUBPXly4ECP++r5M6rWa4qE/Y1a3KoCAABj/dAPST//883HrRvC7Dz+1V+V3v1u/+tqF4IdAAAwlmVJf/AH0p/+qfTII7uvP/WU9OKL0m/9VnC1tQPLnQAAAKNZlvTTP938X6nUfJ5IBF1VexDsAABA10gmg66gveiKBQAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBDhoAsAAAA47PL5vM6dO6daraaRkRE9/PDDCoVCQZd1E4IdAADAbVQqFX3uc5/T+fPnZVmWLMuS4zhKJpN65plndPz48aBL3IOuWAAAgFtwXVcvvviiLly44D13HEeStLW1pb/8y7/UwsJCkCXehGAHAABwC7lcTleuXJHrujd9bSfk/cM//EMAld0ewQ4AAOAWXn/9ddn27aOS67p666231Gg0fKzqzgh2AAAAt1CpVG7ZWtfKdV3VajWfKtofwQ4AAOAWBgYG9n1PIpFQLBbzoZq7Q7ADAAC4hSeeeOKOX7csS0899ZQsy/Kpov0R7AAAAG6ht7dXH/rQh275NcuyNDg4qPe85z0+V3VnrGMHAABwG9///d+vdDqtr371q1peXpYkhcNhPf744/rgBz+oeDwecIV7EewAAADu4NFHH9Xp06dVKBRUr9fV39+vaDR60/vq9bpefvllffvb31ahUJAdCmniyKSODE5ocHDQl1rpigUAANiHZVkaGBhQNpu9Zair1Wp6/vnn9dJLL2llZUWu66pRryt3+Zr+8A//UDMzM77USbADAAC4T1/72teUy+Vuet11XTUaDb344ou+rHdHsAMAALgPjUZDL7/88m3XvHNdV6VSSWfPnm17LQQ7AACA+1AsFlUul+/4Htu2NT8/3/ZaCHYAAAD3IRQKHej77gfBDgAA4D709vbuO+vVcRydOHGi7bUQ7AAAAO6DZVn6gR/4gdt+3bZtTUxMaHJysu21EOwAAADu0+OPP673ve99kppBTpK0vdXY0NCQnn32WV+2HmOBYgAAgPtkWZbe//7365FHHtErr7yiKzNXZYdDmjwyqY+8/8O+jK+TCHYAAAAHZnh4WB/5yEf06vkzqtZrioYjvoU6ia5YAAAAYxDsAAAADOF7V2ytXpckVes1vXr+jN+HN1a1Xgu6BABAB+O6fLB2rss7uccvvgc7V7vbbRBGDp5t+9ePDwDofM3rRvN6zHX54LXmHj/4HuwsWd43GQ1H/D680Ww7pKnseNBlAAA6yFR2XLn8vByn/RvUd5OdkGyp/UuctPI92EXCYW+WyJMnH/P78AAAoMVgb0aDvZmgyzDOzqzYSNjfqMXkCQAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADEGwAwAAMATBDgAAwBAEOwAAAEMQ7AAAAAxBsAMAADAEwQ4AAMAQBDsAAABDEOwAAAAMQbADAAAwBMEOAADAEAQ7AAAAQxDsAAAADBEO6sDVek2vnj8T1OEBdJFqveb9l/MOAD/snHf85nuws+2QpN2TLAD4ifMOAD81c49/fA92U9lx5fLzcpyG34cG0KVaw1w0HAmwEgDdxLZDmsqO+3pMy3Vd19cjAgAAoC2YPAEAAGAIgh0AAIAhCHYAAACGINgBAAAYgmAHAABgCIIdAACAIQh2AAAAhiDYAQAAGIJgBwAAYAiCHQAAgCEIdgAAAIYg2AEAABiCYAcAAGAIgh0AAIAhCHYAAACGINgBAAAYgmAHAABgCIIdAACAIQh2AAAAhiDYAQAAGIJgBwAAYAiCHQAAgCEIdgAAAIYg2AEAABiCYAcAAGAIgh0AAIAh/j8u91Af0gLW9wAAAABJRU5ErkJggg==",
"text/plain": [
- "